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From Graphs to Simplicial Complexes:
Algebra of Boundary Operators and

Homology Groups
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Networks of Interactions

♦ Relational Data (multi-agent systems with structured interactions) are
present in biology, neurology, chemistry, transportation and social
networks, etc.

♦ Structure of the interactions can be induced by the geometry of the
system or functionality of the interactions

(a) gene regulation (b) chemical reactions (c) bike paths in Paris
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Networks of Interactions
Graphs and Matrices

Graphs are widely used models of multi-agent systems restricted to only
dyadic interactions.
♦ graph G = (V0,V1) with V0 — set of nodes (agents) and

V1 ⊆ V0 × V0 — set of edges;
♦ associated matrices: adjacency (node vs node) A, incidence B (node
→ edge), Laplacian L = BB⊤, and degree matrix D, . . .

Used for
♦ dynamics on graphs: ẋxx = Axxx + yyy

♦ random walks: pppt+1 = D−
1
2 LD−

1
2pppt

♦ label spreading: min ∥yyy− xxx∥+α
∑

Aij|xi − xj|2
♦ centrality measures: ccc = 1

λA⊤ccc

1

2

3

4

5
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Higher-Order Models

Graph (classical)
pairwise interactions

Higher-order Models
non-linear relations

motifs , hypergraphs,
simplicial complexes

Definition
Motifs are specific repeating subgraphs (e.g.
triangles, 4-cycles, etc.).

♦ may promote label spreading or
synchronization

♦ frequency signature for networks’
classification

♦ require preexisting knowledge of the
structures
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Higher-Order Models

Graph (classical)
pairwise interactions

Higher-order Models
non-linear relations

motifs , hypergraphs,
simplicial complexes

Definition
Hypergraph models allows interactions as
any possible subset of nodes (hyperedge).
♦ much more general model
♦ lack of structure and restrictions

complicate topological analysis
♦ may require tensor machinery with

worse tractability
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Higher-Order Models

Graph (classical)
pairwise interactions

Higher-order Models
non-linear relations

motifs , hypergraphs,
simplicial complexes

Definition
Simplicial complex K = {σ} is a
collection of nodal simplexes:
♦ each interaction in the system is a

nodal simplex;
♦ each face of a simplex σ ∈ K also

lies in K.

K = V0(K)
︸ ︷︷ ︸

nodes

, V1(K)
︸ ︷︷ ︸

edges

, V2(K)
︸ ︷︷ ︸

triangles

, . . .

Topological Stability and Preconditioning of Higher-Order Laplacian Operators on Simplicial Complexes | Tony Savostianov (GSSI) 8

Outline:
1 Introduction

Graphs and ma-
trices
Higher-order
Models
Simplicial
Complex
Homology
Groups
Weighted Homol-
ogy Groups

2 Stability of Ho-
mology Group

3 HeCS-
preconditioning



Simplicial Complex
Example

1 2

3

4

5

6

7

8

V0(K) = {[1], [2], [3], [4], [5], [6], [7], [8]}, m0 = 8
V1(K) = {[1, 2], [1, 3], [2, 3], [2, 4], [3, 4], [4, 5],

[4, 6], [4, 7], [5, 6], [5, 7], [6, 7], [6, 8]}, m1 = 12
V2(K) = {[1, 2, 3], [4, 5, 7], [4, 6, 7], [5, 6, 7]}, m2 = 4
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Simplicial Complex and Topology
Boundary operators

Definition
Topological properties of the simplicial complex K are described via
boundary operators Bk:

Bk : simplex σ −→ boundary (faces) of σ

Chain space Ck is a linear space of formal sums of simplexes from Vk(K):
♦ C0 — space of states of nodes (e.g. labels);
♦ C1 — space of edge flows;
♦ C2 — space of states of triangles, etc.
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Simplicial Complex and Topology
Boundary operators

Bk : Ck 7→ Ck−1, Bk[v1, . . . vk+1] =
∑

j

(−1)j[v1, . . . vj−1, vj+1, . . . vk+1]

1 2

3

4

B1
1
2

1
3

1
4

2
3

2
4

1 -1 -1 -1 0 0
2 1 0 0 -1 -1
3 0 1 0 1 0
4 0 0 1 0 1

B2
1
2
3

1
2
4

12 1 1
13 -1 0
14 0 -1
23 1 0
24 0 1

Fundamental Lemma of Topology: BkBk+1 = 0.
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Simplicial Complex and Topology
Homology Groups

Definition (Homology groups)
Since BkBk+1 = 0, the k-th homology group is defined as

Hk = kerBk⧸imBk+1
∼= kerBk ∩ kerB⊤k+1 = ker

�

B⊤k Bk + Bk+1B⊤k+1

�

︸ ︷︷ ︸

Lk

where Lk is the k-th graph Laplacian operator.

♦ L0 = B1B⊤1 — classical graph Laplacian operator
♦ L1 = B⊤1 B1 + B2B⊤2 — 1- (Hodge) Laplacian operator
♦ L↑k = Bk+1B⊤k+1 — up-Laplacian, L↓k = B⊤k Bk — down-Laplacian
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Simplicial Complex and Topology
Hodge Decomposition

Hodge Decomposition (k = 1):

Rm1 =

kerB⊤2
︷ ︸︸ ︷

imB⊤1 ⊕ ker (B⊤1 B1 + B2B⊤2 )⊕ imB2
︸ ︷︷ ︸

kerB1

Each flow xxx ∈ C1 have three parts in the decomposition, xxx = yyy + zzz + hhh:
♦ hhh ∈ ker L1 — harmonic part;
♦ note that the conjugate B⊤1 [v1, v2] = [v2]− [v1], so yyy ∈ imB⊤1 —

gradient part
♦ similarly, zzz ∈ imB2 — curl part
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Simplicial Complex and Topology
Homology Groups

♦ elements of ker Lk correspond to the k-dimensional holes of K;
♦ dim ker Lk = number of k-dimensional holes in K.

ker L0 — connected components, ker L1 — 1D holes, ker L2 — 3D voids

dim ker L0 = 1
dim ker L1 = 1

dim ker L0 = 1
dim ker L1 = 0

dim ker L0 = 2
dim ker L1 = 0
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Homology Group
Illustration

A B

C.1

−→

C.2

−→

C.3

−→ · · · −→

C.4
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Simplicial Complex and Topology
Generalisation to the Weighted Case

♦ weight function for simplex of k-th order: wk : Ck 7→ R+;
♦ diagonal weight matrix Wk = diag

�

�p

wk(σ)
	

σ∈Vk(K)

�

Bk −→ Bk = W−1
k−1BkWk

Fundamental Lemma of Topology holds:

BkBk+1 =
�

W−1
k−1BkWk

�

· (W−1
k Bk+1Wk+1) = 0

Lemma (Weight impact onHk)
The dimension of the homology groups of K is not affected by the weights of
its k-simplicies:
dim kerBk = dim kerBk, dim kerB

⊤

k = dim kerB⊤k , dimHk = dimHk
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Simplicial Complex and Topology
Generalisation to the Weighted Case

♦ weight function for simplex of k-th order: wk : Ck 7→ R+;
♦ diagonal weight matrix Wk = diag

�

�p

wk(σ)
	

σ∈Vk(K)

�

Bk −→ Bk = W−1
k−1BkWk

Fundamental Lemma of Topology holds:

BkBk+1 =
�

W−1
k−1BkWk

�

· (W−1
k Bk+1Wk+1) = 0

Common choices:
♦ min-rule: the weight of the triangle is the minimal weight of adjacent

edges, w2(τ) = min{w1(σ1),w1(σ2),w1(σ3)}
♦ product: the weight of the triangle is the product of weights of

adjacent edges, w2(τ) =
3
p

w1(σ1)w1(σ2)w1(σ3)
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Topological Instability
of Simplicial Complexes

via Matrix Nearness Problems
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Stability of the Homology Group

Problem Statement
Find the smallest (in weight) set of edges to eliminate in K such that:

dimH1( eK) ≥ dimH1(K) + 1

create another hole in H1(K)

↕
create another dimension in ker L1

↕
push the smallest positive λ+ ∈ σ(L1) to 0
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Stability of the Homology Group
Principal Spectral Inheritance

Theorem (HOL’s spectral inheritance)
Let L

down
k = B

⊤
k Bk and L

up
k = Bk+1B

⊤
k+1 (so Lk = L

down
k + L

up
k ). Then:

1. σ+(L
up
k ) = σ+(L

down
k+1 ), where σ+(·) denotes the set of positive eigenvalues;

2. for any µ ∈ σ+(Lk), either µ ∈ σ+(L
up
k ) or the corresponding eigenvector v⃗ ∈ ker L

up
k .

Similarly, for any ν ∈ σ+(Lk+1), either ν ∈ σ+(L
down
k+1 ) or the corresponding eigenvector

u⃗ ∈ ker L
down
k+1 , and

B
⊤
k Bkv⃗ = µv⃗, Bk+2B

⊤
k+2u⃗ = νu⃗ .

0 0 · · · 0 λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10 ← σ(L1)

0 0 · · · 0 λ1 λ2 0 λ4 0 0 λ7 λ8 0 λ10 ← σ(B
T

1 B1)

0 0 · · · 0 0 0 λ3 0 λ5 λ6 0 0 λ9 0 ← σ(B2B
T

2 )
holes µ
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Stability of the Homology Group
Homological Pollution

1

1 1

1

1

1 1

1

1 1

1 2

3

4

5 6

7

Connected K
1 hole

1

1 1

ε

ε

1 1

1

1 1

1 2

3

4

5 6

7

Almost disconnected K
1 hole

1

1 1

1 1

1

1 1

1 2

3

4

5 6

7

Disconnected K
no holes

First positiveλ+ ∈ σ(L1)may be inheritted fromσ(L0) and does not relate
to the new hole in Hk (homological pollution).
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Stability of the Homology Group
Problem Statement

Creating another hole in H1 ⇐⇒ push λ+ ∈ σ(L
up

1 )→ 0, and
avoid homological pollution.

combinatorial approach
find edges E− ⊂ V1(K) to

eliminate such that

dimH1( eK) ≥ dimH1(K)+1
with
∑

e∈E−

w1(e)→ min

−→

continuous approach
perturb edges’ weights

W1 →W1 + δW1

such that λ+(δW1) = 0 with
∥δW1∥ → min

spectral matrix nearness
problem
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Spectral Matrix Nearness Problems

Problem: find smallest X such that A + X has desired spectral properties.

Target eigenvalue and functional: for example, right-most eigenvalue
λmax(A + X) or first non-zero eigenvalue λ+(A + X) with F(X) =
1
2λ

2
max(A + X).

Gradient flow: Integrate in the direction of anti-gradient of the target func-
tional.

Lemma (Derivative of the eigenvalue)
A(τ) has a unique eigenvalue λ(τ) that is analytic in a neighborhood of τ0,
with λ(τ0) = λ0

λ̇(τ0) =
1

yyy∗0xxx0
yyy∗0Ȧ(τ0)xxx0
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Stability of the Homology Group
Weight update

The edges’ weight perturbationW1 →W1+δW1 triggers a weight update
for nodes’ weights W0 and triangles weights W2:
♦ edge elimination (w1(e) + δw1(e) = 0) should trigger the elimination

of all adjacent triangles, e.g. for t = [e1, e2, e3]

w2(t) ∼ min {w1(e1) + δw1(e1),w1(e2) + δw1(e2),w1(e3) + δw1(e3)}

♦ vertex isolation should not trigger its elimination, e.g.

w0(v) ∼ ρ+
∑

v∈e

(w1(e) + δw1(e)) , ρ > 0
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Gradient Flow for Topological Stability

Let δW1 = εE, where ε is the pertrubation size and E, ∥E∥ = 1, is the
perturbation shape.
Target functional:

F(ε,E) =

extend H1
︷ ︸︸ ︷

1
2
λ+(ε,E)2 +

α

2

prevent pollution
︷ ︸︸ ︷

max

�

0, 1−
µ2(ε,E)
µ

�2

where λ+(ε,E) is the smallest positive eigenvalue of perturbed L
up

1 (ε,E)
and µ2(ε,E) is the algebraic connectivity of perturbed L0(ε,E).

Gradient Flow for Steepest Descent
Let E = E(t). Then:
d
dt

F(ε,E(t)) = ε



∇EF(e,E(t)), Ė
�

=⇒ steepest monotone descent
Ė = −∇EF(e,E(t))
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Gradient Flow for Topological Stability
Free and Constrained Stages

∥δW1∥ = ε+∆ε∥δW1∥ = ε

constrained flow
∥E(t)∥ ≡ 1

free flow
∥E(t)∥ ↑

∥∇F∥ = 0

∥∇F∥ = 0

Given the intricate landscape of F(ε,E), we
alternate constrained, norm-preserving, and
free gradient flows:
♦ constrained:

Ė = −∇EF(e,E(t)) + κE(t) where κ
is given by ⟨Ė,E⟩;

♦ free flow: Ė = −∇EF(e,E(t)) untill
∥εE(t)∥ = ε+∆ε;

♦ both flows use non-negativity projector
P+ to avoid negative weights;

♦ the functional F(ε,E) monotonically
decreases.

Topological Stability and Preconditioning of Higher-Order Laplacian Operators on Simplicial Complexes | Tony Savostianov (GSSI) 26

Outline:
1 Introduction
2 Stability of Ho-
mology Group
Spectral
inheritance and
homological
pollution
Problem
Statement
Gradient Flow for
Perturbation
Free and Con-
strained Stages
Numerical experi-
ments

3 HeCS-
preconditioning



Illustrative example
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Numerical benchmark
Triangulation

1 2

34

5

6

7

8

♦ (n− 4) points are randomly thrown on
the unit square;

♦ Delauney triangulation of sampled and
corner points is calculated;

♦ edges randomly added or removed to
reach the target sparsity ν;

♦ weights of the edges are randomly
sampled, wi ∼ U

�1
4 ,

3
4

�

.
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Numerical benchmark
Triangulation
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Real data example
Transportation Network
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Cholesky-like Preconditioning
via Heavy Collapsible Subcomplex

for Laplacian Systems
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Linear System with Hodge Laplacian

Linear System for Hodge Laplacians

Lkxxx = fff
xxx, fff ⊥ ker Lk

⇐⇒ min
xxx
∥Lkxxx− fff∥

♦ inside simplicial dynamics ẋxx = Lkxxx− fff (stationary point and implicit
integrators)

♦ iterative solutions xxxl = Lkxxxl−1 for spectrum computations
♦ inside implicit graph neural networks, xxx = φ (WxxxLk + B)
♦ projections for gradient and curl components in Hodge

decomposition
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Linear Systems
Joint Solver for Laplacian Lk

Theorem (Joint k-Laplacian solver)
The least-square problem Lkxxx = fff can be reduced to a sequence of
consecutive least-square problems for isolated up-Laplacians. Precisely, xxx is a
solution of

Lkxxx = fff s. t. xxx, fff ⊥ ker Lk

if and only if it can be written as xxx = B⊤k uuu + xxx2, where:

buuu = argmin
zzz



L↑k−1zzz− Bkfff1



 , uuu = argmin
zzz



L↑k−1zzz− buuu


 ,

xxx2 = argmin
yyy



L↑kyyy − fff2





and fff = fff1 + fff2 with fff1 = B⊤k zzz1, zzz1 = argmin
zzz



L↑k−1zzz− Bkfff


.
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Linear Systems
Iterative methods

Consequence
Solution of the “whole” Laplacian system Lkxxx = fff can be reduced to solving only
up-Laplacian systems L↑kxxx = fff .

♦ both Lk and L↑k are sparse, so iterative solvers (CGLS, LSMR, etc.) can
benefit from fast matvec operation;

♦ convergence of such methods are primarily determined by the condition
number κ+(L↑k), or, specifically:

∥xxxN − xxx∗∥L↑k
≤ 2





Ç

κ+(L
↑
k)− 1

Ç

κ+(L
↑
k) + 1





N

∥eee0∥L↑k

♦ since all Laplacians are naturally singular, we use κ+(L↑k) =
σ+max(L

↑
k)

σ+
min

(L↑k)
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Symmetric Preconditioning

Definition (Sparse Simplicial Complex)
We assume K to be a sparse simplicial complex (in comparison with
always sparse Laplacian operators) at the k−th order, if

mk = O(mk−1 logmk−1)

analogously to the standard graph case.

Problem
In order to reduce κ+(L

↑
k), we want to move:

min
xxx
∥L↑kxxx− fff∥ −→ min

xxx





�

C†L↑kC
⊤†
�

(C⊤xxx)− C†fff




such that the transition is bijective and C† is cheap.
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Cholesky Preconditioner
Schur Complements

If C is lower-triangular, the pseudo-inverse is cheap and C is known as
Cholesky preconditioner. It is computed along Schur complements:

Si = Si−1 −
1
αi

Si−1δiδ
⊤
i S⊤i−1

ccci =
1
√
αi

Si−1δi

αi = δ
⊤
i Si−1δi

With these definitions, the Cholesky factorC such thatA = CC⊤ is formed
by the columns ccci, namely

C = [ccc1 ccc2 . . .cccn]
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Cholesky Preconditioner
Exact computation problem

♦ computation of exact Schur complements Si is expensive
♦ one aims to leverage underlying simplicial complex K to speed it up

Lemma (Rank-1 decomp.): L↑k =
∑

t∈Vk(K) L↑k(t) =
∑

t∈Vk(K) w(t)eeeteee⊤t

♦ w(t) = [W2
k ]tt is the weight of the simplex t

♦ eeet is the t-th column of the matrix Bk

Then, for L↑1:

S1 =
∑

t|1/∈t

w(t)eeeteee⊤t

︸ ︷︷ ︸

remainder of L↑1
without edge 1

+
1

2Ω{1}|∅

∑

t1|1∈t1
t2|1∈t2

w(t1)w(t2)
�

eeet1 − eeet2
��

eeet1 − eeet2
�⊤

︸ ︷︷ ︸

clique term
not a Laplacian
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Collapsibility of Simplicial Complexes

The simplex σ ∈ K is free if it is a face of exactly one simplex
τ = τ(σ) ∈ K of higher order (maximal face).

The collapse K\{σ} of K at a free simplex σ is the operation of reducing
K to K′, where K′ = K − σ − τ .

Simplex K is called collapsible if it can be reduced to a single node.

1 2

3 4

1 2

3 4

1 2

3
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Weak Collapsibility

General collapsibility is NP-hard and too demanding for our purposes (to
eliminate cyclic terms).

Definition (Weakly collapsible complex)
A simplicial complex K restricted to its 2-skeleton is called weakly collapsible, if
there exists a collapsing sequence Σ1 such that the simplicial complex L = K\Σ1
has no simplices of order 2, i.e. V2(L) = ∅ and L↑1(L) = 0.

1 2

3 4

1 2

3 4

1 2

3

Weak collapsibility can be consistently checked by GREEDY ALGORITHM
and polynomially solvable( O(m1)).
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Weak Collapsibility
Linear Systems

Lemma (Exact Solver for Collapsible Complexes)
Let the simplicial complex K be weakly collapsible through the collapsing
sequence Σ and the corresponding sequence of maximal faces T. Let the
permutation matrices of the two sequences be PΣ and PT, i.e. such that
[PΣ]ij = 1 ⇐⇒ j = σi, and similarly for PT. Then C = PΣB2PT is an
exact Cholesky multiplier for PΣL↑1(K)P⊤Σ , i.e. PΣL↑1(K)P⊤Σ = CC⊤.

Idea
Find a weakly collapsible subcomplex L ⊆ K and use its Cholesky
multiplier C as preconditioner.
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Preconditioning by Subcomplex
How to find the best subcomplex?

Definition (Subsampling Matrix)
Diagonal matrix Π is called subsampling matrix if Πii = 1 only if the i-th triangle
is included in subcomplex L.

Lemma (Optimal Weight Choice)
Triangles should be sampled in L with the same weight as the original K.

Theorem (Preconditioning by Subcomplex)
Let L be a weakly collapsible subcomplex of K defined by the subsampling matrix Π
and let C be a Cholesky multiplier of L↑1(L). Then the conditioning of the
symmetrically preconditioned L↑1 is given by:

κ+
�

C†PΣL↑1P
⊤
ΣC†⊤
�

=
�

κ+

�

�

S1V⊤1 Π
�†

S1

��2
= (κ+(ΠV1))

2 ,

where V1 forms the orthonormal basis on imB
⊤
2 .
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Preconditioning by Subcomplex
How to find the best weakly collapsible subcomplex?

Preconditioning quality is determined by κ+(ΠV1):
♦ Note that imV1 = W2 imB⊤2
♦ Rows in V1 are scaled by the weights of the triangles
♦ Multiplication by Π cancels rows in V1 for the eliminated triangles
♦ Good choice of Π: eliminate triangles with the smallest edges

Subcomplex L should:

1. have the same set of nodes and edges;
2. subsample triangles, V2(L) ⊆ V2(K);
3. be weakly collapsible through some collapsing sequence Σ and sequence of

maximal faces T;
4. have the same 1-homology as K, that is ker L1(K) = ker L1(L) (bijectivity);
5. have the highest possible total weight to improve preconditioning.
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Preconditioning by Subcomplex
Heavy Collapsible Subcomplex

♦ we assume K to be sparse, m2 = O(m1 logm1);
♦ K has a disbalanced weight profile for triangles (e.g. generated minrule),

so a dominating heavy subcomplex is more probable;
♦ algorithmic complexity of HeCS preconditioning is O(m1m2).
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Numerical Experiments
Timings
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(a) Single iteration timing: the
average time of matvec
computation for the original system
(blue), shifted ichol (orange) and
HeCS preconditioner (green).
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(b) Computation time for the heavy
subcomplex preconditioner in case
of enriched triangulations on m0
vertices

Figure: Timings of HeCS-perconditioner
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Numerical Experiments
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Thank you for attention!

Topological
Stability

paper on arXiV code on Github

HeCS -
Preconditioning

paper on arXiV code on Github

Personal Page: further materials on https://antsav.me/
Comp@GSSI: our group at https://num-gssi.github.io/
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Break the screen in case of . . .
Well, just break it,

we will figure it out later!
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HOLaGRAF
Nuances of the Eigensolver

♦ main computational load: first non-zero eigenvalue of both L
↑
1(ε,E) and

L0(ε,E)

♦ both operators are of form A⊤A (with A = B2 or A = B
⊤
1 );

♦ corresponding optimization problem: minxxx⊥ kerA
∥Axxx∥
∥xxx∥

♦ requires sparse singular value solver based on a Krylov subspace scheme
for the pseudo inverse of A⊤A

L-Sq Problems (solve with preconditioned LSMR):
min

xxx
∥Lup

1 (ε,E)xxx− bbb∥, min
xxx
∥L0(ε,E)xxx− bbb∥ ,

Idea: fix the preconditioner along the flow.
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HeCS
Sparsification

Theorem (Simplicial Sparsification)
For any ε > 0, a sparse simplicial complex L can be sampled from K as follows:
1. compute the probability measure ppp on Vk+1(K) proportional to the generalized

resistance vector rrr = diag
�

B⊤k+1(L
↑
k)
†Bk+1

�

;
2. sample q simplices τi from Vk+1(K) according to the probability measure ppp,

where q is chosen so that q(mk) ≥ 9C2mk log(mk/ε), for some absolute
constant C > 0;

3. form a sparse simplicial complex L with all the sampled simplexes of order k and
all its faces with the weight wk+1(τi)

q(mk)ppp(τi)
; weights of repeated simplices are

accumulated.

Then, with probability at least 1/2, the up-Laplacian of the sparsifier L is ε-close to
the original one, i.e. it holds L↑k(L) ≈ε L↑k(K).
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HeCS
Shifted ichol comparison

Assuming U is an orthogonal basis of ker L↑1, one can move to L↑1 → L↑1 +
αUU⊤, which can be preconditioned by non-singular methods. Specifically,
we use Cα = ichol(L↑1 + αUU⊤).
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U can be formed directly using the vectors B⊤1 xxx, xxx ∈ (1)⊥, when K has
trivial 0- and 1-homology.
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