

Topological Stability and Preconditioning of Higher-Order Laplacian Operators on Simplicial Complexes

Anton Savostianov, email: anton.savostianov@gssi.it

Supervisors: Nicola Guglielmi and Francesco Tudisco PhD Defence in Mathematics, GSSI, Italy

Overview¹

1. Introduction

- 1.1 Relational Data and Graphs
- 1.2 Higher-Order Models: Simplicial Complexes
- 1.3 Homology Groups as Topological Descriptors

2. Topological Stability of Simplicial Complexes

- 2.1 How to define topological stability?
- 2.2 Principal Spectral Inheritance
- 2.3 Gradient Flow for Spectral Matrix Nearness Problems

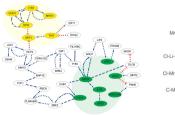
3. Preconditioning for up-Laplacians

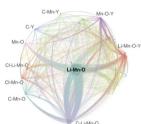
- 3.1 Joint solver for k-Laplacian
- 3.2 Cholesky preconditioner
- 3.3 Weakly Collapsible Complex
- 3.4 Preconditioning by Subcomplex

From Graphs to Simplicial Complexes: Algebra of Boundary Operators and Homology Groups

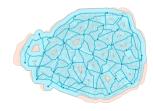
Networks of Interactions

- Relational Data (multi-agent systems with structured interactions) are present in biology, neurology, chemistry, transportation and social networks, etc.
- Structure of the interactions can be induced by the **geometry** of the system or **functionality** of the interactions





(b) chemical reactions



(c) bike paths in Paris

Outline:

Introduction Graphs and matrices

Models
Simplicial
Complex
Homology
Groups
Weighted Homo

Stability of Homology Group

HeCSpreconditioning

Networks of Interactions Graphs and Matrices

Graphs are widely used models of multi-agent systems restricted to only dvadic interactions.

- \diamond graph $\mathcal{G} = (\mathcal{V}_0, \mathcal{V}_1)$ with \mathcal{V}_0 set of **nodes** (agents) and $\mathcal{V}_1 \subset \mathcal{V}_0 \times \mathcal{V}_0$ set of **edges**:
- \diamond associated matrices: adjacency (node vs node) A, incidence B (node \rightarrow edge), Laplacian L = BB^T, and degree matrix D, ...

Used for

- \diamond dynamics on graphs: $\dot{\mathbf{x}} = A\mathbf{x} + \mathbf{y}$
- \diamond random walks: $\mathbf{p}_{t+1} = D^{-\frac{1}{2}}LD^{-\frac{1}{2}}\mathbf{p}_{t}$
- \Diamond label spreading: min $\|\mathbf{y} \mathbf{x}\| + \alpha \sum_i A_{ii} |x_i x_i|^2$
- \diamond centrality measures: $\mathbf{c} = \frac{1}{\lambda} \mathbf{A}^{\top} \mathbf{c}$

Outline:

Introduction Graphs and matrices

Higher-order Models Simplicial Complex Homology Groups Weighted Homo ogy Groups

- Stability of Homology Group
- HeCSpreconditioning

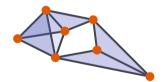
Higher-Order Models

Graph (classical)

pairwise interactions

T

Higher-order Models



motifs, hypergraphs, simplicial complexes

Definition

Motifs are specific repeating subgraphs (e.g. triangles, 4-cycles, etc.).

- may promote label spreading or synchronization
- frequency signature for networks' classification
- require preexisting knowledge of the structures

Outline:

I Introduction
Graphs and ma

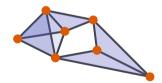
Higher-order Models

Complex Homology Groups Weighted Homo

- Stability of Homology Group
- HeCSpreconditioning

Higher-Order Models

Graph (classical) pairwise interactions

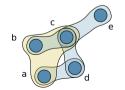


motifs, hypergraphs, simplicial complexes

Definition

Hypergraph models allows interactions as any possible subset of nodes (hyperedge).

- ♦ much more general model
- lack of structure and restrictions complicate topological analysis
- may require tensor machinery with worse tractability



Outline:

I Introduction
Graphs and ma

Higher-order Models

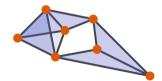
Complex
Homology
Groups
Weighted Homology
Groups

Stability of Homology Group

HeCSpreconditioning

Higher-Order Models

Graph (classical) pairwise interactions



motifs, hypergraphs, simplicial complexes

Definition

Simplicial complex $\mathcal{K} = \{\sigma\}$ is a collection of nodal simplexes:

- each interaction in the system is a nodal simplex:
- \diamond each face of a simplex $\sigma \in \mathcal{K}$ also lies in \mathcal{K} .

$$\mathcal{K} = \underbrace{\mathcal{V}_0(\mathcal{K})}_{\text{nodes}}, \underbrace{\mathcal{V}_1(\mathcal{K})}_{\text{edges}}, \underbrace{\mathcal{V}_2(\mathcal{K})}_{\text{triangles}}, \dots$$

Outline:

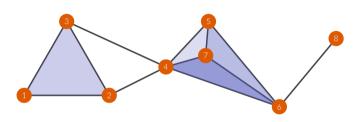
I Introduction
Graphs and ma

Higher-order Models

Complex
Homology
Groups
Weighted Homology
Groups

- Stability of Homology Group
- HeCSpreconditionir

Simplicial Complex Example



Outline:

Introduction Graphs and r

trices Higher-ord Models

Simplicial Complex

Groups Weighted Homol ogy Groups

- Stability of Homology Group
- HeCSpreconditioning

Simplicial Complex and Topology Boundary operators

Definition

Topological properties of the simplicial complex K are described via boundary operators B_k :

 $\mathsf{B}_\mathsf{k}: \mathsf{simplex}\, \sigma \longrightarrow \mathsf{boundary}\, (\mathsf{faces})\, \mathsf{of}\, \sigma$

Chain space C_k is a linear space of formal sums of simplexes from $\mathcal{V}_k(\mathcal{K})$:

- \Diamond C₀ space of states of nodes (e.g. labels);
- \Diamond C₁ space of edge flows;
- \Diamond C_2 space of states of triangles, etc.

Outline:

Introduction Graphs and trices

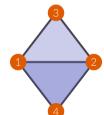
> Models Simplicial Complex

Groups
Weighted Homol

- Stability of Homology Group
- HeCSpreconditioning

Simplicial Complex and Topology Boundary operators

$$\mathsf{B}_k : \mathsf{C}_k \mapsto \mathsf{C}_{k-1}, \qquad \mathsf{B}_k[\mathsf{v}_1, \dots \mathsf{v}_{k+1}] = \sum_j (-1)^j [\mathsf{v}_1, \dots \mathsf{v}_{j-1}, \mathsf{v}_{j+1}, \dots \mathsf{v}_{k+1}]$$



B ₁ 2 3 4	1 2	1	1 4	2	2
1	-1	-1	-1	0	0
2	1	0	0	-1	-1
3	0	1	0	1	0
4	0	0	1	0	1

B_2	1 2 3	1 2 4
12	1	1
13	-1	0
14	0	-1
23	1	0
24	0	1

Fundamental Lemma of Topology: $B_k B_{k+1} = 0$.

Outline:

Introduction Graphs and

trices Higher-order

Simplicial Complex

Groups
Weighted Homo

- Stability of Ho-
- HeCSpreconditioning

Hodge Laplacians on Graphs L.H. Lim

Simplicial Complex and Topology Homology Groups

Definition (Homology groups)

Since $B_k B_{k+1} = 0$, the k-th homology group is defined as

$$\mathcal{H}_k = \ker \mathsf{B}_k /_{\mathsf{im}\,\mathsf{B}_{k+1}} \cong \ker \mathsf{B}_k \cap \ker \mathsf{B}_{k+1}^\top = \ker \underbrace{\left(\mathsf{B}_k^\top \mathsf{B}_k + \mathsf{B}_{k+1} \mathsf{B}_{k+1}^\top\right)}_{\mathsf{L}_k}$$

where L_k is the k-th graph Laplacian operator.

- $\Diamond L_0 = B_1 B_1^{\top} \text{classical graph Laplacian operator}$
- \downarrow L₁ = B₁^TB₁ + B₂B₂^T 1- (Hodge) Laplacian operator
- \downarrow $L_k^{\uparrow} = B_{k+1}B_{k+1}^{\top} up$ -Laplacian, $L_k^{\downarrow} = B_k^{\top}B_k down$ -Laplacian

Outline:

Introduction Graphs and r trices Higher-order Models Simplicial Complex

Homology Groups Weighted Homol-

- Stability of Homology Group
- mology Group

 HeCS-
- preconditioning

Hodge Laplacians on Graphs L.H. Lim

Simplicial Complex and Topology Hodge Decomposition

Hodge Decomposition (k = 1):

$$\mathbb{R}^{m_1} = \overbrace{\mathsf{im}\,\mathsf{B}_1^\top \oplus \underbrace{\mathsf{ker}\,(\mathsf{B}_1^\top\mathsf{B}_1 + \mathsf{B}_2\mathsf{B}_2^\top)}_{\mathsf{ker}\,\mathsf{B}_1} \oplus \mathsf{im}\,\mathsf{B}_2}^{\mathsf{ker}\,\mathsf{B}_1^\top} \oplus \mathsf{im}\,\mathsf{B}_2}^{\mathsf{ker}\,\mathsf{B}_1}$$

Each flow $\mathbf{x} \in C_1$ have three parts in the decomposition, $\mathbf{x} = \mathbf{y} + \mathbf{z} + \mathbf{h}$:

- \Diamond **h** \in ker L₁ harmonic part;
- \diamond note that the conjugate $\mathsf{B}_1^{\top}[\mathsf{v}_1,\mathsf{v}_2]=[\mathsf{v}_2]-[\mathsf{v}_1]$, so $\mathbf{y}\in\mathsf{im}\,\mathsf{B}_1^{\top}-\mathsf{gradient}$ part
- \diamond similarly, $\mathbf{z} \in \operatorname{im} \mathsf{B}_2 \operatorname{curl} \mathsf{part}$

Outline:

Introduction
Graphs and

ices igher-order lodels implicial omplex

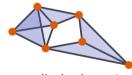
Homology Groups Weighted Hom

- Stability of Ho
- mology Group
- preconditioning

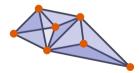
Simplicial Complex and Topology Homology Groups

- \diamond elements of ker L_k correspond to the k-dimensional holes of \mathcal{K} ;
- \Diamond dim ker L_k = number of k-dimensional holes in \mathcal{K} .

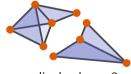
$\ker L_0 - \text{connected components}, \ker L_1 - \text{1D holes}, \ker L_2 - \text{3D voids}$



 $\begin{aligned} & \text{dim ker } L_0 = 1 \\ & \text{dim ker } L_1 = 1 \end{aligned}$



 $\dim \ker \mathsf{L}_0 = 1$ $\dim \ker \mathsf{L}_1 = 0$



 $\dim \ker L_0 = 2$ $\dim \ker L_1 = 0$

Outline:

Introduction
Graphs and r
trices
Higher-order
Models
Simplicial

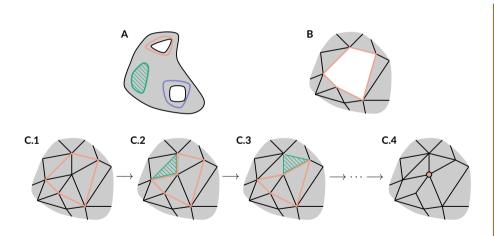
Homology Groups

ogy Groups

- Stability of Homology Group
- HeCSpreconditioning

Hodge Laplacians on Graphs L.H. Lim

Homology Group Illustration



Outline:

Introduction

Graphs and matrices
Higher-order
Models
Simplicial

Homology Groups Weighted Homol-

Stability of Ho-

HeCS-

Simplicial Complex and Topology Generalisation to the Weighted Case

- \diamond weight function for simplex of k-th order: $w_k : C_k \mapsto \mathbb{R}_+$;
- \lozenge diagonal weight matrix $W_k = \operatorname{diag}\left(\left\{\sqrt{W_k(\sigma)}\right\}_{\sigma \in \mathcal{V}_k(\mathcal{K})}\right)$

$$\mathsf{B}_k \quad \longrightarrow \quad \overline{\mathsf{B}}_k = \mathsf{W}_{k-1}^{-1} \mathsf{B}_k \mathsf{W}_k$$

Fundamental Lemma of Topology holds:

$$\overline{B}_k \overline{B}_{k+1} = \left(W_{k-1}^{-1} B_k \overline{W}_k\right) \cdot \left(\overline{W}_k^{-1} B_{k+1} W_{k+1}\right) = 0$$

Lemma (Weight impact on \mathcal{H}_k)

The dimension of the homology groups of $\mathcal K$ is not affected by the weights of its k-simplicies:

$$\dim \ker \overline{B}_k = \dim \ker B_k, \quad \dim \ker \overline{B}_k^\top = \dim \ker B_k^\top, \quad \dim \overline{\mathcal{H}}_k = \dim \mathcal{H}_k$$

Outline:

Introduction Graphs and

trices Higher-order Models Simplicial Complex Homology

Weighted Homology Groups

- Stability of Homology Group
- preconditioning

Simplicial Complex and Topology Generalisation to the Weighted Case

- \diamond weight function for simplex of k-th order: $w_k : C_k \mapsto \mathbb{R}_+$;
- \lozenge diagonal weight matrix $W_k = \operatorname{diag}\left(\left\{\sqrt{W_k(\sigma)}\right\}_{\sigma \in \mathcal{V}_k(\mathcal{K})}\right)$

$$\mathsf{B}_k \quad \longrightarrow \quad \overline{\mathsf{B}}_k = \mathsf{W}_{k-1}^{-1} \mathsf{B}_k \mathsf{W}_k$$

Fundamental Lemma of Topology holds:

$$\overline{B}_k \overline{B}_{k+1} = \left(W_{k-1}^{-1} B_k \overline{W}_k\right) \cdot \left(\overline{W}_k^{-1} B_{k+1} W_{k+1}\right) = 0$$

Common choices:

- ϕ min-rule: the weight of the triangle is the minimal weight of adjacent edges, $w_2(\tau) = \min\{w_1(\sigma_1), w_1(\sigma_2), w_1(\sigma_3)\}$
- product: the weight of the triangle is the product of weights of adjacent edges, $w_2(\tau) = \sqrt[3]{w_1(\sigma_1)w_1(\sigma_2)w_1(\sigma_3)}$

Outline:

1 Introduction Graphs and n

> Higher-order Models Simplicial Complex Homology

Weighted Homology Groups

- Stability of Homology Group
- HeCSpreconditioning

Topological Instability of Simplicial Complexes via Matrix Nearness Problems

Stability of the Homology Group

Problem Statement

Find the smallest (in weight) set of edges to eliminate in $\mathcal K$ such that:

$$\dim \overline{\mathcal{H}}_1(\widetilde{\mathcal{K}}) \geq \dim \overline{\mathcal{H}}_1(\mathcal{K}) + 1$$

create another hole in $\overline{\mathcal{H}}_1(\mathcal{K})$ \updownarrow create another dimension in $\ker \overline{\mathsf{L}}_1$ \updownarrow push the smallest positive $\lambda_+ \in \sigma(\overline{\mathsf{L}}_1)$ to 0

Outline:

- Introduction
- Stability of Homology Group

Spectral
inheritance and
homological
pollution
Problem
Statement
Gradient Flow for
Perturbation
Free and Constrained Stages
Numerical experiments

preconditionin

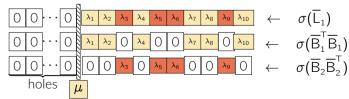
Stability of the Homology Group Principal Spectral Inheritance

Theorem (HOL's spectral inheritance)

Let
$$\overline{\mathsf{L}}_{\mathsf{k}}^{\mathsf{down}} = \overline{\mathsf{B}}_{\mathsf{k}}^{\mathsf{T}} \overline{\mathsf{B}}_{\mathsf{k}}$$
 and $\overline{\mathsf{L}}_{\mathsf{k}}^{\mathsf{up}} = \overline{\mathsf{B}}_{\mathsf{k}+1} \overline{\mathsf{B}}_{\mathsf{k}+1}^{\mathsf{T}}$ (so $\overline{\mathsf{L}}_{\mathsf{k}} = \overline{\mathsf{L}}_{\mathsf{k}}^{\mathsf{down}} + \overline{\mathsf{L}}_{\mathsf{k}}^{\mathsf{up}}$). Then:

- 1. $\sigma_+(\overline{\mathsf{L}}_{\mathsf{k}}^{\mathsf{up}}) = \sigma_+(\overline{\mathsf{L}}_{\mathsf{k}+1}^{\mathsf{down}})$, where $\sigma_+(\cdot)$ denotes the set of positive eigenvalues;
- 2. for any $\mu \in \sigma_+(\overline{L}_k)$, either $\mu \in \sigma_+(\overline{L}_k^{up})$ or the corresponding eigenvector $\vec{v} \in \ker \overline{L}_k^{up}$. Similarly, for any $\nu \in \sigma_+(\overline{L}_{k+1})$, either $\nu \in \sigma_+(\overline{L}_{k+1}^{down})$ or the corresponding eigenvector $\vec{u} \in \ker \overline{L}_{k+1}^{down}$, and

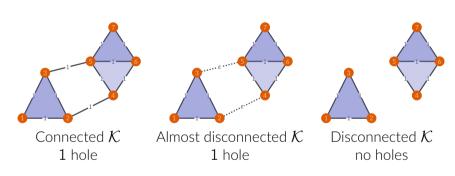
$$\overline{\mathsf{B}}_{\mathsf{k}}^{\top}\overline{\mathsf{B}}_{\mathsf{k}}\vec{\mathsf{v}} = \mu\vec{\mathsf{v}}, \qquad \overline{\mathsf{B}}_{\mathsf{k}+2}\overline{\mathsf{B}}_{\mathsf{k}+2}^{\top}\vec{\mathsf{u}} = \nu\vec{\mathsf{u}}\,.$$



Outline:

- Introductio
- Stability of Homology Group Spectral inheritance and homological pollution
 - Statement
 Gradient Flow fo
 Perturbation
 Free and Con
 strained Stages
 Numerical experi
 ments
- B HeCSpreconditioning

Stability of the Homology Group Homological Pollution



First positive $\lambda_+ \in \sigma(\overline{L}_1)$ may be inheritted from $\sigma(\overline{L}_0)$ and does not relate to the new hole in \mathcal{H}_k (homological pollution).

Outline:

Introduction

Stability of Homology Group Spectral inheritance and homological pollution

Statement
Gradient Flow for
Perturbation
Free and Constrained Stages
Numerical experiments

preconditionin

Stability of the Homology Group Problem Statement

Creating another hole in $\overline{\mathcal{H}}_1 \iff \text{push } \lambda_+ \in \sigma(\overline{\mathsf{L}}_1^{\text{up}}) \to 0$, and avoid **homological pollution**.

combinatorial approach

find edges $\mathsf{E}^- \subset \mathcal{V}_1(\mathcal{K})$ to eliminate such that

$$\dim \overline{\mathcal{H}}_1(\widetilde{\mathcal{K}}) \geq \dim \overline{\mathcal{H}}_1(\mathcal{K}) + 1$$
 with

$$\sum_{e \in E^-} w_1(e) \to \min$$

continuous approach

perturb edges' weights $W_1 \rightarrow W_1 + \delta W_1$ such that $\lambda_+(\delta W_1) = 0$ with $\|\delta W_1\| \rightarrow \min$

spectral matrix nearness problem

Outline:

- Introduction
- Stability of Homology Group Spectral
 - inheritance and homological
 - Problem Statement
 - Gradient Flow for Perturbation Free and Constrained Stages Numerical experi-
- HeCS-
- preconditionin

Spectral Matrix Nearness Problems

Problem: find *smallest* X such that A + X has desired spectral properties.

Target eigenvalue and functional: for example, right-most eigenvalue $\lambda_{\max}(A + X)$ or first non-zero eigenvalue $\lambda_{+}(A + X)$ with $F(X) = \frac{1}{2}\lambda_{\max}^{2}(A + X)$.

Gradient flow: Integrate in the direction of anti-gradient of the target functional.

Lemma (Derivative of the eigenvalue)

A(au) has a unique eigenvalue $\lambda(au)$ that is analytic in a neighborhood of au_0 , with $\lambda(au_0)=\lambda_0$

$$\dot{\lambda}(au_{\scriptscriptstyle 0}) = rac{1}{\mathbf{y}_{\scriptscriptstyle 0}^*\mathbf{x}_{\scriptscriptstyle 0}}\mathbf{y}_{\scriptscriptstyle 0}^*\dot{\mathsf{A}}(au_{\scriptscriptstyle 0})\mathbf{x}_{\scriptscriptstyle 0}$$

Outline:

1 Introduction

Stability of Homology Group Spectral

homological pollution

Problem Statement

Gradient Flow for Perturbation Free and Constrained Stages Numerical experiments

B HeCS-

preconditionin

Stability of the Homology Group Weight úpdate

The edges' weight perturbation $W_1 \to W_1 + \delta W_1$ triggers a weight update for nodes' weights W_0 and triangles weights W_2 :

 \diamond edge elimination $(w_1(e) + \delta w_1(e) = 0)$ should trigger the elimination of all adjacent triangles, e.g. for $t = [e_1, e_2, e_3]$

$$w_2(t) \sim \min \left\{ w_1(e_1) + \delta w_1(e_1), w_1(e_2) + \delta w_1(e_2), w_1(e_3) + \delta w_1(e_3) \right\}$$

vertex isolation should not trigger its elimination, e.g.

$$\mathsf{w}_0(\mathsf{v}) \sim \rho + \sum_{\mathsf{v} \in \mathsf{e}} \left(\mathsf{w}_1(\mathsf{e}) + \delta \mathsf{w}_1(\mathsf{e}) \right), \quad \rho > 0$$

Outline:

- Stability of Homology Group

Problem

Gradient Flow for Topological Stability

Let $\delta W_1 = \varepsilon E$, where ε is the pertrubation size and E, ||E|| = 1, is the perturbation shape.

Target functional:

F(
$$\varepsilon$$
, E) = $\frac{1}{2}\lambda_{+}(\varepsilon, E)^{2} + \frac{\alpha}{2}\max\left(0, 1 - \frac{\mu_{2}(\varepsilon, E)}{\mu}\right)^{2}$

where $\lambda_+(\varepsilon, \mathsf{E})$ is the smallest positive eigenvalue of perturbed $\overline{\mathsf{L}}_{\scriptscriptstyle 1}^{\scriptscriptstyle \mathsf{up}}(\varepsilon, \mathsf{E})$ and $\mu_2(\varepsilon, E)$ is the algebraic connectivity of perturbed $\overline{L}_0(\varepsilon, E)$.

Gradient Flow for Steepest Descent

Let
$$E = E(t)$$
. Then:

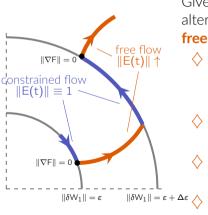
$$\frac{\mathrm{d}}{\mathrm{dt}}\mathsf{F}(\varepsilon,\mathsf{E}(\mathsf{t})) = \varepsilon \left\langle \nabla_{\mathsf{E}}\mathsf{F}(\mathsf{e},\mathsf{E}(\mathsf{t})),\dot{\mathsf{E}} \right\rangle \Longrightarrow \quad \text{steepest monotone descent} \\ \dot{\mathsf{E}} = -\nabla_{\mathsf{E}}\mathsf{F}(\mathsf{e},\mathsf{E}(\mathsf{t}))$$

Outline:

- Stability of Homology Group

Gradient Flow for

Gradient Flow for Topological Stability Free and Constrained Stages



Given the intricate landscape of $F(\varepsilon, E)$, we alternate **constrained**, norm-preserving, and **free** gradient flows:

- constrained: $\dot{E} = -\nabla_E F(e, E(t)) + \kappa E(t)$ where κ is given by $\langle \dot{E}, E \rangle$;
- ightharpoonup free flow: $\dot{\mathsf{E}} = -\nabla_{\mathsf{E}}\mathsf{F}(\mathsf{e},\mathsf{E}(\mathsf{t}))$ untill $\|\varepsilon\mathsf{E}(\mathsf{t})\| = \varepsilon + \Delta\varepsilon$;
- ♦ both flows use non-negativity projector P₊ to avoid negative weights;
- \diamond the functional $F(\varepsilon, E)$ monotonically decreases.

Outline:

Introduction

Stability of Homology Group Spectral

inheritance and homological pollution Problem Statement Gradient Flow for

strained Stages Numerical expe

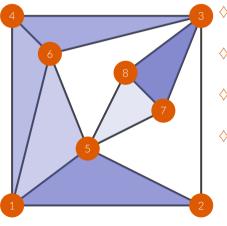
ments

preconditioning

Illustrative example



Numerical benchmark Triangulation



- (n-4) points are randomly thrown on the unit square;
- Delauney triangulation of sampled and corner points is calculated;
- edges randomly added or removed to reach the target sparsity \(\nu\);
 - weights of the edges are randomly sampled, $w_i \sim U \left[\frac{1}{4}, \frac{3}{4} \right]$.

Outline:

1 Introduction

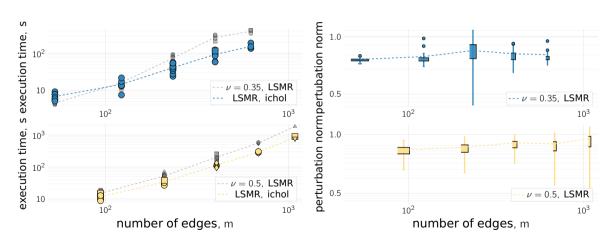
Stability of Homology Group

inheritance and homological pollution Problem Statement Gradient Flow fo Perturbation Free and Con strained Stages

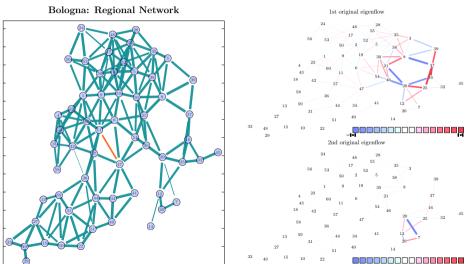
Numerical experiments

B HeCSpreconditioning

Numerical benchmark Triangulation



Real data example Transportation Network



Cholesky-like Preconditioning via Heavy Collapsible Subcomplex for Laplacian Systems

Linear System with Hodge Laplacian

Linear System for Hodge Laplacians

$$\begin{array}{ccc} L_k \mathbf{x} = \mathbf{f} \\ \mathbf{x}, \mathbf{f} \perp \ker L_k \end{array} & \Longleftrightarrow & \min_{\mathbf{x}} \|L_k \mathbf{x} - \mathbf{f}\| \end{array}$$

- \diamond inside simplicial dynamics $\dot{\mathbf{x}} = \mathsf{L}_{\mathsf{k}}\mathbf{x} \mathbf{f}$ (stationary point and implicit integrators)
- \diamond iterative solutions $\mathbf{x}_{l} = \mathsf{L}_{k}\mathbf{x}_{l-1}$ for spectrum computations
- \diamond inside implicit graph neural networks, $\mathbf{x} = \phi \left(\mathsf{W} \mathbf{x} \mathsf{L}_{\mathsf{k}} + \mathsf{B} \right)$
- projections for gradient and curl components in Hodge decomposition

Outline:

- 1 Introduction
- Stability of Homology Group
- HeCSpreconditioning Linear System Cholesky preconditioning

Choleský precon ditioning Collapsibility Preconditioning by Subcomplex Numerical Exper ments

Linear Systems Joint Solver for Laplacian L_{kl}

Theorem (Joint k-Laplacian solver)

The least-square problem $L_k \mathbf{x} = \mathbf{f}$ can be reduced to a sequence of consecutive least-square problems for isolated up-Laplacians. Precisely, \mathbf{x} is a solution of

$$L_k \mathbf{x} = \mathbf{f}$$
 s. t. $\mathbf{x}, \mathbf{f} \perp \ker L_k$

if and only if it can be written as $\mathbf{x} = \mathsf{B}_{\mathsf{k}}^{\mathsf{T}} \mathbf{u} + \mathbf{x}_2$, where:

$$\begin{split} \widehat{\boldsymbol{u}} &= \underset{\boldsymbol{z}}{\text{arg min}} \left\| \boldsymbol{L}_{k-1}^{\uparrow} \boldsymbol{z} - \boldsymbol{B}_{k} \boldsymbol{f}_{1} \right\|, \quad \boldsymbol{u} = \underset{\boldsymbol{z}}{\text{arg min}} \left\| \boldsymbol{L}_{k-1}^{\uparrow} \boldsymbol{z} - \widehat{\boldsymbol{u}} \right\|, \\ \boldsymbol{x}_{2} &= \underset{\boldsymbol{y}}{\text{arg min}} \left\| \boldsymbol{L}_{k}^{\uparrow} \boldsymbol{y} - \boldsymbol{f}_{2} \right\| \end{split}$$

and
$$\mathbf{f} = \mathbf{f}_1 + \mathbf{f}_2$$
 with $\mathbf{f}_1 = \mathsf{B}_k^{\top} \mathbf{z}_1$, $\mathbf{z}_1 = \arg\min_{\mathbf{z}} \left\| \mathsf{L}_{k-1}^{\uparrow} \mathbf{z} - \mathsf{B}_k \mathbf{f} \right\|$.

Outline:

- Introduction
- Stability of Ho mology Group
- HeCSpreconditioning Linear System

Cholesky preconditioning
Collapsibility
Preconditioning
by Subcomplex
Numerical Experiments

Linear Systems Iterative methods

Consequence

Solution of the "whole" Laplacian system $L_k x = f$ can be reduced to solving only up-Laplacian systems $L_k^{\uparrow} x = f$.

- \diamond both L_k and L_k^{\uparrow} are sparse, so iterative solvers (CGLS, LSMR, etc.) can benefit from fast matvec operation;
- \diamond convergence of such methods are primarily determined by the condition number $\kappa_{+}(L_{L}^{\uparrow})$, or, specifically:

$$\|\mathbf{x}_{\mathsf{N}} - \mathbf{x}^*\|_{\mathsf{L}_{\mathsf{k}}^{\uparrow}} \leq 2 \left(\frac{\sqrt{\kappa_{+}(\mathsf{L}_{\mathsf{k}}^{\uparrow})} - 1}{\sqrt{\kappa_{+}(\mathsf{L}_{\mathsf{k}}^{\uparrow})} + 1} \right)^{\mathsf{N}} \|\mathbf{e}_{0}\|_{\mathsf{L}_{\mathsf{k}}^{\uparrow}}$$

 \diamond since all Laplacians are naturally singular, we use $\kappa_+(\mathsf{L}_\mathsf{k}^\uparrow) = \frac{\sigma_\mathsf{max}^+(\mathsf{L}_\mathsf{k}^\uparrow)}{\sigma_\mathsf{min}^+(\mathsf{L}_\mathsf{k}^\downarrow)}$

Outline:

- Introduction
- Stability of Ho mology Group
- HeCSpreconditioning Linear System

Cholesky preconditioning

Preconditioning by Subcomplex Numerical Experiments

Symmetric Preconditioning

Definition (Sparse Simplicial Complex)

We assume ${\cal K}$ to be a sparse simplicial complex (in comparison with always sparse Laplacian operators) at the k-th order, if

$$m_k = \mathcal{O}(m_{k-1} \log m_{k-1})$$

analogously to the standard graph case.

Problem

In order to reduce $\kappa_+(L_k^{\uparrow})$, we want to move:

$$\min_{\mathbf{x}} \| L_k^{\uparrow} \mathbf{x} - \mathbf{f} \| \longrightarrow \min_{\mathbf{x}} \left\| \left(C^{\dagger} L_k^{\uparrow} C^{\top \dagger} \right) (C^{\top} \mathbf{x}) - C^{\dagger} \mathbf{f} \right\|$$

such that the transition is bijective and C^{\dagger} is cheap.

Outline:

Introduction

HeCS-

- Stability of Ho mology Group
- preconditioning
 Linear System
 Cholesky precon-

Cholesky preconditioning Collapsibility

Collapsibility
Preconditioning
by Subcomplex
Numerical Experiments

Cholesky Preconditioner Schur Complements

If C is lower-triangular, the pseudo-inverse is cheap and C is known as **Cholesky preconditioner**. It is computed along **Schur complements**:

$$\begin{split} S_i &= S_{i-1} - \frac{1}{\alpha_i} S_{i-1} \delta_i \delta_i^\top S_{i-1}^\top \\ \mathbf{c}_i &= \frac{1}{\sqrt{\alpha_i}} S_{i-1} \delta_i \\ \alpha_i &= \delta_i^\top S_{i-1} \delta_i \end{split}$$

With these definitions, the Cholesky factor C such that $A = CC^{T}$ is formed by the columns \mathbf{c}_{i} , namely

$$C = [\mathbf{c}_1 \, \mathbf{c}_2 \, \dots \mathbf{c}_n]$$

Outline:

HeCS-

- Introduction
- Stability of Ho mology Group
- preconditioning
 Linear System
 Cholesky precon-

Cholesky preconditioning Collapsibility Preconditioning

Preconditioning by Subcomplex Numerical Experiments

Cholesky Preconditioner Exact computation problem

- ♦ computation of exact Schur complements S_i is expensive
- \diamond one aims to leverage underlying simplicial complex κ to speed it up

Lemma (Rank-1 decomp.):
$$L_k^{\uparrow} = \sum_{t \in \mathcal{V}_k(\mathcal{K})} L_k^{\uparrow}(t) = \sum_{t \in \mathcal{V}_k(\mathcal{K})} w(t) \textbf{e}_t \textbf{e}_t^{\intercal}$$

- \diamond w(t) = [W_k]_{tt} is the weight of the simplex t
- \diamond **e**_t is the t-th column of the matrix B_k

Then, for L_1^{\uparrow} :

$$S_1 = \underbrace{\sum_{\textbf{t}|1\notin \textbf{t}} \textbf{w}(\textbf{t}) \textbf{e}_{\textbf{t}} \textbf{e}_{\textbf{t}}^\top}_{\text{remainder of } \textbf{L}_1^\uparrow} + \underbrace{\frac{1}{2\Omega_{\{1\}|\emptyset}} \sum_{\substack{\textbf{t}_1|1\in \textbf{t}_1\\\textbf{t}_2|1\in \textbf{t}_2}} \textbf{w}(\textbf{t}_1) \textbf{w}(\textbf{t}_2) \big[\textbf{e}_{\textbf{t}_1} - \textbf{e}_{\textbf{t}_2} \big] \big[\textbf{e}_{\textbf{t}_1} - \textbf{e}_{\textbf{t}_2} \big]^\top}_{\substack{\textbf{clique term}\\\textbf{not a Laplacian}}}$$

Outline:

- Introduction
- Stability of Homology Group
- 3 HeCSpreconditioning Linear System

Cholesky preconditioning

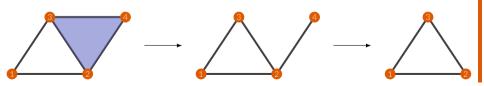
Collapsibility
Preconditioning
by Subcomplex
Numerical Experiments

Collapsibility of Simplicial Complexes

The simplex $\sigma \in \mathcal{K}$ is **free** if it is a face of exactly one simplex $\tau = \tau(\sigma) \in \mathcal{K}$ of higher order (maximal face).

The collapse $\mathcal{K}\setminus\{\sigma\}$ of \mathcal{K} at a free simplex σ is the operation of reducing \mathcal{K} to \mathcal{K}' , where $\mathcal{K}'=\mathcal{K}-\sigma-\tau$.

Simplex K is called **collapsible** if it can be reduced to a single node.



Outline:

- Introduction
- Stability of Ho mology Group
- HeCSpreconditioning Linear System

Cholesky precon-

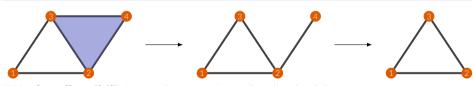
Collapsibility
Preconditioning
by Subcomplex
Numerical Experiments

Weak Collapsibility

General collapsibility is *NP-hard* and too demanding for our purposes (to eliminate cyclic terms).

Definition (Weakly collapsible complex)

A simplicial complex \mathcal{K} restricted to its 2-skeleton is called weakly collapsible, if there exists a collapsing sequence Σ_1 such that the simplicial complex $\mathcal{L} = \mathcal{K} \setminus \Sigma_1$ has no simplices of order 2, i.e. $\mathcal{V}_2(\mathcal{L}) = \emptyset$ and $\mathsf{L}_1^{\uparrow}(\mathcal{L}) = 0$.



Weak collapsibility can be consistently checked by GREEDY ALGORITHM and polynomially solvable ($\mathcal{O}(m_1)$).

Outline:

- 1 Introduction
- Stability of Ho mology Group
- HeCSpreconditioning Linear System

Collapsibility

Preconditioning by Subcomplex Numerical Exper

Weak Collapsibility Linear Systems

Lemma (Exact Solver for Collapsible Complexes)

Let the simplicial complex $\mathcal K$ be weakly collapsible through the collapsing sequence Σ and the corresponding sequence of maximal faces $\mathbb T$. Let the permutation matrices of the two sequences be P_{Σ} and $P_{\mathbb T}$, i.e. such that $[P_{\Sigma}]_{ij}=1\iff j=\sigma_i$, and similarly for $P_{\mathbb T}$. Then $C=P_{\Sigma}\overline{B}_2P_{\mathbb T}$ is an exact Cholesky multiplier for $P_{\Sigma}L_1^{\uparrow}(\mathcal K)P_{\Sigma}^{\top}$, i.e. $P_{\Sigma}L_1^{\uparrow}(\mathcal K)P_{\Sigma}^{\top}=CC^{\top}$.

Idea

Find a weakly collapsible subcomplex $\mathcal{L} \subseteq \mathcal{K}$ and use its Cholesky multiplier C as preconditioner.

Outline:

- Introduction
- Stability of Homeonic Mology Group
- HeCS preconditioning
 Linear System
 Challed a precond

Collapsibility

Preconditioning by Subcomplex Numerical Experiments

Preconditioning by Subcomplex How to find the best subcomplex?

Definition (Subsampling Matrix)

Diagonal matrix Π is called subsampling matrix if $\Pi_{ii}=1$ only if the i-th triangle is included in subcomplex \mathcal{L} .

Lemma (Optimal Weight Choice)

Triangles should be sampled in \mathcal{L} with the same weight as the original \mathcal{K} .

Theorem (Preconditioning by Subcomplex)

Let \mathcal{L} be a weakly collapsible subcomplex of \mathcal{K} defined by the subsampling matrix Π and let C be a Cholesky multiplier of $L_1^{\uparrow}(\mathcal{L})$. Then the conditioning of the symmetrically preconditioned L_1^{\uparrow} is given by:

$$\kappa_{+} \left(\mathsf{C}^{\dagger} \mathsf{P}_{\Sigma} \mathsf{L}_{1}^{\uparrow} \mathsf{P}_{\Sigma}^{\top} \mathsf{C}^{\dagger \top} \right) = \left(\kappa_{+} \left(\left(\mathsf{S}_{1} \mathsf{V}_{1}^{\top} \mathsf{\Pi} \right)^{\dagger} \mathsf{S}_{1} \right) \right)^{2} = \left(\kappa_{+} (\mathsf{\Pi} \mathsf{V}_{1}) \right)^{2},$$

where V_1 forms the orthonormal basis on im \overline{B}_2^{\top} .

- 1 Introduction
- Stability of Ho mology Group
- HeCSpreconditioning Linear System Cholesky preconditioning
 Collapsibility
 - Collapsibility
 Preconditioning
 by Subcomplex
 Numerical Experiments

Preconditioning by Subcomplex How to find the best weakly collapsible subcomplex?

Preconditioning quality is determined by $\kappa_+(\Pi V_1)$:

- \Diamond Note that $\operatorname{im} V_1 = W_2 \operatorname{im} B_2^{\top}$
- \Diamond Rows in V_1 are scaled by the weights of the triangles
- \Diamond Multiplication by Π cancels rows in V_1 for the eliminated triangles
- \Diamond Good choice of Π : eliminate triangles with the smallest edges

Subcomplex \mathcal{L} should:

- 1. have the same set of nodes and edges;
- 2. subsample triangles, $V_2(\mathcal{L}) \subseteq V_2(\mathcal{K})$;
- 3. be weakly collapsible through some collapsing sequence Σ and sequence of maximal faces \mathbb{T} :
- 4. have the same 1-homology as \mathcal{K} , that is $\ker L_1(\mathcal{K}) = \ker L_1(\mathcal{L})$ (bijectivity);
- 5. have the highest possible total weight to improve preconditioning.

Outline:

- 1 Introduction
- Stability of Ho mology Group
- HeCSpreconditioning Linear System Cholesky precon

Collapsibility
Preconditioning
by Subcomplex
Numerical Expe

Preconditioning by Subcomplex Heavy Collapsible Subcomplex

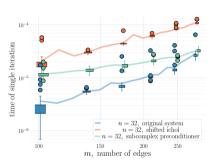
Algorithm 5 HEAVY_SUBCOMPLEX(\mathcal{K} , \mathcal{W}_2): construction a heavy collapsible subcomplex

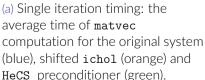
```
Require: the original complex \mathcal{K}, weight matrix W_2
```

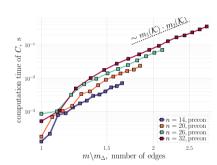
- 1: $\mathcal{L} \leftarrow \emptyset$, $\mathbb{T} \leftarrow \emptyset$ \triangleright initial empty subcomplex
- 2: while there is unprocessed triangle in $\mathcal{V}_2(\mathcal{K})$ do
- 3: $t \leftarrow \text{nextHeaviestTriangle}(\mathcal{K}, W_2)$ \triangleright e.g. iterate through $\mathcal{V}_2(\mathcal{K})$ sorted by weight
- 4: **if** $\mathcal{L} \cup \{t\}$ is weakly collapsible **then** \triangleright run GREEDY_COLLAPSE($\mathcal{L} \cup \{t\}$) (Algorithm 4)
- 5: $\mathcal{L} \leftarrow \mathcal{L} \cup \{t\}, \ \mathbb{T} \leftarrow [\mathbb{T} \ t]$ \Rightarrow extend \mathcal{L} by t
- 6: end if
- 7: end while
- 8: **return** \mathcal{L} , \mathbb{T} , Σ $\qquad \qquad \triangleright$ here Σ is the collapsing sequence of \mathcal{L}
- \diamond we assume \mathcal{K} to be sparse, $m_2 = \mathcal{O}(m_1 \log m_1)$;
- \wedge \mathcal{K} has a disbalanced weight profile for triangles (e.g. generated minrule), so a dominating heavy subcomplex is more probable;
- \diamond algorithmic complexity of HeCS preconditioning is $\mathcal{O}(m_1m_2)$.

- Introductio
- Stability of Homology Group
- HeCSpreconditioning
 - Linear System Cholesky preconditioning
 - Collapsibility
 Preconditioning
 by Subcomplex
 Numerical Experiments

Numerical Experiments Timings



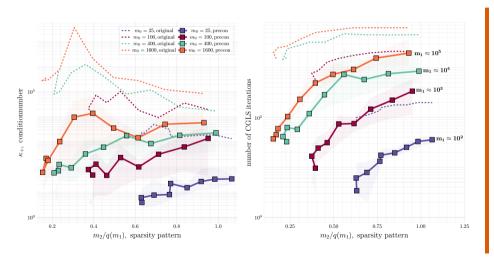




(b) Computation time for the heavy subcomplex preconditioner in case of enriched triangulations on m_0 vertices

- Introductio
- Stability of Ho mology Group
- HeCSpreconditioning Linear System Cholesky precon
 - ditioning Collapsibility Preconditioning by Subcomplex Numerical Exper-
 - Numerical E iments

Numerical Experiments



- Introductio
- Stability of Homology Group
- HeCSpreconditioning
 - Cholesky preditioning
 Collapsibility
 Preconditioning
 Subcomple
 - Numerical Experiments

Thank you for attention!

Topological Stability

HeCS - Preconditioning

Personal Page: further materials on https://antsav.me/ Comp@GSSI: our group at https://num-gssi.github.io/ Break the screen in case of ...
Well, just break it,
we will figure it out later!

HOLaGRAF Nuances of the Eigensolver

- \diamond main computational load: first non-zero eigenvalue of both $\overline{L}^{\uparrow}_{1}(\varepsilon, E)$ and $\overline{L}_{0}(\varepsilon, E)$
- \diamond both operators are of form $A^{\top}A$ (with $A = \overline{B}_2$ or $A = \overline{B}_1^{\top}$);
- ♦ corresponding optimization problem: $\min_{\mathbf{x} \perp \text{ ker A}} \frac{\|\mathbf{A}\mathbf{x}\|}{\|\mathbf{x}\|}$

L-Sq Problems (solve with preconditioned LSMR):

$$\min_{\mathbf{x}} \|\overline{\mathsf{L}}_{1}^{\mathsf{up}}(\varepsilon,\mathsf{E})\mathbf{x} - \mathbf{b}\|, \qquad \min_{\mathbf{x}} \|\overline{\mathsf{L}}_{0}(\varepsilon,\mathsf{E})\mathbf{x} - \mathbf{b}\|,$$

Idea: fix the preconditioner along the flow.

Outline:

- Introduction
- Stability of Ho mology Group
- HeCSpreconditioning

Linear System
Cholesky preconditioning
Collapsibility
Preconditioning
by Subcomplex
Numerical Experiments

HeCS Sparsification

Theorem (Simplicial Sparsification)

For any $\varepsilon > 0$, a sparse simplicial complex $\mathcal L$ can be sampled from $\mathcal K$ as follows:

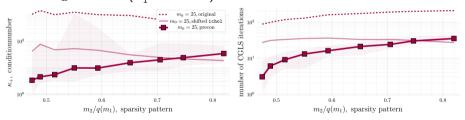
- 1. compute the probability measure \mathbf{p} on $\mathcal{V}_{k+1}(\mathcal{K})$ proportional to the generalized resistance vector $\mathbf{r} = \operatorname{diag}\left(\mathsf{B}_{k+1}^{\top}(\mathsf{L}_{k}^{\uparrow})^{\dagger}\mathsf{B}_{k+1}\right)$;
- 2. sample q simplices τ_i from $\mathcal{V}_{k+1}(\mathcal{K})$ according to the probability measure \mathbf{p} , where q is chosen so that $q(m_k) \geq 9C^2m_k\log(m_k/\epsilon)$, for some absolute constant C>0:
- 3. form a sparse simplicial complex \mathcal{L} with all the sampled simplexes of order k and all its faces with the weight $\frac{w_{k+1}(\tau_i)}{q(m_k)p(\tau_i)}$; weights of repeated simplices are accumulated.

Then, with probability at least 1/2, the up-Laplacian of the sparsifier \mathcal{L} is ε -close to the original one, i.e. it holds $\mathsf{L}^{\uparrow}_{\mathsf{k}}(\mathcal{L}) \approx \mathsf{L}^{\uparrow}_{\mathsf{k}}(\mathcal{K})$.

- Introduction
- Stability of Homology Group
- HeCSpreconditioning Linear System Cholesky preconditioning Collapsibility
 - by Subcomplex Numerical Experiments

HeCS Shifted ichol comparison

Assuming U is an orthogonal basis of $\ker L_1^{\uparrow}$, one can move to $L_1^{\uparrow} \to L_1^{\uparrow} + \alpha U U^{\top}$, which can be preconditioned by non-singular methods. Specifically, we use $C_{\alpha} = ichol(L_1^{\uparrow} + \alpha U U^{\top})$.



U can be formed directly using the vectors $B_1^T \mathbf{x}, \mathbf{x} \in (\mathbf{1})^{\perp}$, when \mathcal{K} has trivial 0- and 1-homology.

- Introduction
- Stability of Ho mology Group
- HeCSpreconditioning Linear System Cholesky preconditioning Collapsibility
 - Numerical Exper-