
Doctoral Thesis, PhD Program in Mathematics

Topological Stability and
Preconditioning of
Higher-Order Laplacian Operators
on Simplicial Complexes
Anton Savostianov1
1Gran Sasso Science Institute, viale F.Crispi 7, L’Aquila, Italy ,
email: anton.savostianov@gssi.it

Supervisors: Francesco Tudisco, francesco.tudisco@gssi.it
Nicola Guglielmi, nicola.guglielmi@gssi.it

Abstract: Relational data exhibiting the underlying structure of interactions of agents in
the system is present in virtually every area of research such as biology, neurology, chemistry,
transportation and social networks, etc, and can be described by classical graph models.
Such models allow the injection of the interactions’ structure into the system dynamics,
govern its controllability and provide uniquely useful structural descriptions of the system
through degree distribution and centrality measures and thus can be used for community
detection, the study of synchronization, node importance, label spreading, and so on. At the
same time, classical graph models are restricted to pair-wise linear interactions between the
agents whilst various natural systems are governed through the multi-agent interactionsand
lack the ability to describe higher-order topological features of the data. As a result, various
higher-order network models have been introduced such as hypergraphs, motifs, cell and
simplicial complexes. Whilst each model above remains useful, one needs to balance its
capability to contain higher-order interactions and the complexity of the arising mathematical
description. Simplicial complexes follow such a trade-off by assuming each interaction to be
a simplex of the system’s agents and describing higher-order topological features (connected
components, one-dimensional holes, void, etc) through homology groups and corresponding
higher-order Laplacian operators Lk .
In the current thesis, we posit questions of the stability of homology groups through

the numerical lens of the stability of higher-order Laplacian operators for weighted simplicial
complexes. In the first part of the work, we formulate and study the topological aspect
of the stability in the sense of minimal perturbation sufficient to increase the homology
group. This problem can be reformulated as a spectral matrix nearness problem for the
corresponding Laplacian operator which is prone to exhibit the phenomenon of homological
pollution. We propose a bi-level optimization framework based on the gradient flow and
matrix differential equations which allows us to obtain the minimal perturbation. The de-
veloped approach is then tested on the synthetic and real-life transportation datasets. The
second part of the work, conversely, considers the numerical stability of the linear system
for higher-order Laplacian operator, Lkx = f. We demonstrate that the system can be
reduced to a sparser one and develop a preconditioning scheme based on the notion of a
weakly collapsible simplicial complex which we refer to as preconditioning by a heavy col-
lapsible subcomplex (HeCS-preconditioner). The performance of the preconditioning routine
is then tested for the computationally demanding cases on the synthetic triangulation-based
datasets.

Keywords: simplicial complex, homology group, Hodge Laplacian, collapsibility, precondi-
tioning, stability

1

mailto:anton.savostianov@gssi.it
mailto:francesco.tudisco@gssi.it
mailto:nicola.guglielmi@gssi.it

Acknowledgements

As with virtually any work, this thesis would not have been written if not

for the efforts, help and support of various people whom I would like to take

a moment to mention here.

I would like to extend my immense gratitude to my scientific advisors,

professors Nicola Guglielmi and Francesco Tudisco, for their help, guidance,

and direction in my research throughout these four years. As a PhD student,

one typically struggles to find a balance between independent work and super-

vision, and it is hard to underestimate how successful Nicola and Francesco

have been in finding such a balance for me. Additionally, I thank my fellow

students and professors from Gran Sasso Science Institute for various discus-

sions that have helped me understand how to present and describe this work

in a somewhat comprehensible way.

On a separate note, I would like to thank Professors Sasha Shapoval and

Mikhail G. Shnirman for reinstating my faith that exciting and interesting

research, which is not buried under all the bureaucracy, still exists, and for

their support and encouragement through one of the darkest periods of my

life prior to starting my PhD.

Finally, it would be impossible for me not to thank my family — my

parents, Lena and Sergey, my sister Dasha, and my wife, Dayana, — for

more things than can fit on a sheet of paper.

The art on the title page is a beautiful work by Prof. Robert Ghrist. We also invite

you to check out a fantastic set of videos on the foundations of Topological Data Analysis,

done by the same author.

https://twitter.com/robertghrist
https://www.youtube.com/playlist?list=PL8erL0pXF3JaR4no7ivppQ5zwhq2QnzzQ

Contents

Chapter: I Introduction 9

Chapter: II Simplicial complex as Higher-order Topology Description 14

I From graph to higher-order models 14

I.I Higher-order Graph Models 16

II Simplicial Complexes 17

III Hodge’s Theory 19

IV Boundary and Laplacian Operators 21

IV.I Boundary operators Bk 21

IV.II Homology group and Hodge Laplacians Lk 25

IV.II.I Homology group as Quontinent space 25

IV.II.II Elements of the Hodge decomposition as harmonic/vorticity/potential

flow . 26

IV.II.III Laplacian operators Lk 28

IV.II.IV Classical Laplacian and its kernel elements 29

IV.II.V Kernel elements of L1 30

V Weighted and Normalized Boundary Operators 33

Chapter: III Topological Stability as MNP 37

I General idea of the topological stability 37

I.I Persistent homology as a facet of topological stability . . . 38

II Spectral Matrix Nearness Problems: overview 40

II.I Target functional for optimization 40

II.II Formulation as a bi-level optimization task 42

II.III Inner level . 43

II.III.I Free gradient calculation 43

II.III.II Constrained gradient flow, stationary points, and

rank-1 optimizers 46

II.IV Outer level and overall optimization scheme 47

III Direct approach: failure and discontinuity problems 48

III.I Principal spectral inheritance 49

III.II Homological pollution: inherited almost disconnectedness . 51

3

III.III Dimensionality reduction: faux edges 53

IV Functional, Derivative, and Alternating Scheme for Topological

Stability 54

IV.I Target Functional and Main Problem for Lk 54

IV.II Free gradient calculation 56

IV.III The constrained gradient system and its stationary points . 58

IV.IV Free Gradient Transition in the Outer Level 59

V Algorithm details 61

V.I Computational costs . 62

VI Benchmarking 64

VI.I Illustrative Example . 64

VI.II Triangulation Benchmark 65

VI.III Transportation Networks 67

Chapter: IV Preconditioning for efficient solver of Laplacian LS 70

I Reduction to a least-square problem for up-Laplacian 71

II Iterative Methods and Preconditioning: an overview 73

II.I Iterative methods . 73

II.II Conjugate gradient method and its convergence 74

II.III Condition number and convergence rate of CG 76

II.IV Zoo of preconditioners 79

III Preconditioning of the up-Laplacian 81

III.I Sparsification of simplicial complexes 82

III.II Schur complements and Cholesky preconditioner 84

III.III Cholesky preconditioner for k = 0 85

III.IV The structure of the Schur complements Si for k = 1 . . . 87

IV Collapsibility of a simplicial complex 89

IV.I Weak collapsibility . 92

V Preconditioning through the subsampling of the 2-Core 94

V.I Preconditioning quality by the subcomplex 96

V.II Algorithm: Preconditioner via heavy collapsible subcomplex 99

VI Benchmarking: triangulation 102

VI.I Conjugate Gradient Least-Square method 102

VI.II Shifted incomplete Cholesky preconditioner 102

VI.III Problem setting: Enriched triangulation as a simplicial complex102

4

VI.IV Heavy subcomplex and triangle weight profile 103

VI.V Timings . 103

VI.VI Performance of the preconditioner 105

Chapter: V Conclusion and future prospects 108

I Overview of main contributions 108

II Future projects 109

List of Figures

I.1 Examples of basic graph structures 14

I.2 Examples of real-life graph networks 15

II.1 Example of a simplicial complex on 8 nodes; nodes included

in the complex are shown in orange, edges — in black, and

triangles — in blue. 18

II.2 Modeling molecule’s structure of 2OFS protein via simplicial

complex: (a) surface representation; (b) graph model; (c)

simplicial complex (3-skeleton). Adapted from [WWLX22] 19

III.1 Illustration of a harmonic representative for an equivalence

class . 20

IV.1 Example of chains on the simplicial complex 22

IV.2 Sample action of the boundary operators 23

IV.3 Left-hand side panel: example of simplicial complex K on
7 nodes and of the action of B2 on the 2-simplex [1, 2, 3];

2-simplices included in the complex are shown in red, arrows

correspond to the orientation. Panels on the right: matrix

forms B1 and B2 of boundary operators, respectively. . . . 24

IV.4 Connection between the homology group and k-dimensional

holes: contractivity (“fillability”) and non-contractivity of cy-

cles in continuous (A) and discrete cases (B and C): gradual

contraction of a cycle not containing a hole is given on (C1)–

(C4). 26

IV.5 Continuous and analogous discrete manifolds with one 1-

dimensional hole (dimH1 = 1). Left pane: the continuous
manifold; center pane: the discretization with mesh vertices;

right pane: a simplicial complex built upon the mesh. Tri-

angles in the simplicial complex K are colored gray (right).
. 26

IV.6 Example for the complete graph of 4 vertices; orientation is

shown by arrow, and each edge has the same weight. 32

5

I.1 Persistent homology for the graph case. (a) Examples of

growing complexes along the increasing filtration parameter

ε; (b) bar code of the existence of connected components

(solid) and holes (dashed). Adapted from [OPT+17]. . . . 39

III.1 Illustration for the principal spectrum inheritance (Theorem III.III.5)

in case k = 0: spectra of L1, L
↓
1 and L

↓
1 are shown. Colors

signify the splitting of the spectrum, λi > 0 ∈ σ(L1); all yel-
low eigenvalues are inherited from σ+(L0); red eigenvalues

belong to the non-inherited part. Dashed barrier µ signi-

fies the penalization threshold (see the target functional in

Subsection IV.I) preventing homological pollution (see Sub-

section III.II). 51

III.2 Example of the homological pollution, Example 7, for the sim-

plicial complexK on 7 vertices; the existing hole is [2, 3, 4, 5]
(left and center pane), all 3 cliques are included in the simpli-

cial complex and shown in blue. The left pane demonstrates

the initial setup with 1 hole; the center pane retains the hole

exhibiting spectral pollution; the continuous transition to the

eliminated edges with β1 = 0 (no holes) is shown on the

right pane. 52

IV.1 The scheme of alternating constrained (blue, ∥E(t)∥ ≡ 1)
and free gradient (red) flows. Each stage inherits the final

iteration of the previous stage as initial E0(εi) or Ẽ0(εi)

respectively; constrained gradient is integrated till the sta-

tionary point (∥∇F (E)∥ = 0), free gradient is integrated
until ∥δW1∥ = εi + ∆ε. The scheme alternates until the
target functional vanishes (F (ε, E) = 0). 60

VI.1 Simplicial complex K on 8 vertices for the illustrative run
(on the left): all 2-simplices from V2 are shown in blue, the
weight of each edge w1(ei) is given on the figure. On the

right: perturbed simplicial complexK through the elimination
of the edge [5, 6] creating additional hole [5, 6, 7, 8]. . . . 64

VI.2 Illustrative run of the framework determining the topolog-

ical stability: the top pane — the flow of the functional

Fε(E(t)); the second pane — the flow of σ(L1), λ+ is

highlighted; third pane — the change of the perturbation

norm ∥E(t)∥; the bottom pane — the heatmap of the per-
turbation profile E(t). 65

VI.3 Example of Triangulation and Holes 66

6

VI.4 Benchmarking Results on the Synthetic Triangulation Dataset:

varying sparsities ν = 0.35, 0.5 andN = 16, 22, 28, 34, 40;

each network is sampled 10 times. Shapes correspond to the

number of eliminated edges in the final perturbation: 1 : #,
2 : □, 3 : D, 4 : △. For each pair (ν,N), the un-
preconditioned and Cholesky-preconditioned execution times

are shown. 66

VI.5 Example of the Transportation Network for Bologna. Left

pane: original zone graph where the width of edges corre-

sponds to the weight; to-be-eliminated edge is colored in red.

Right pane: eigenflows, original and created; color and width

correspond to the magnitude of entries. 68

IV.1 2-Core, examples: all 3-cliques in graphs are included in cor-

responding V2(K). 91

IV.2 The probability of the 2-Core in richer-than-triangulation sim-

plicial complexes: triangulation of random points modified to

have

[
ν
m0·(m0−1)

2

]
edges on the left; random sensor net-

works with ε-percolation on the right. ν∆ defines the initial

sparsity of the triangulated network; εmin = Eminx,y∈[0,1]2 ∥x−
y∥2 is the minimal possible percolation parameter. 91

IV.3 Example of weakly collapsible but not collapsible simplicial

complex . 92

V.1 The scheme of the simplicial complex transformation: from

the original K to the heavy weakly collapsible subcomplex L. 101
VI.1 Timings of HeCS-perconditioner 104

VI.2 Preconditioning quality for enriched triangulations with a varying

number of vertices m0 = 16, 25, 50, 100 and sparsity patterns

m2⧸q(m1) and independent bi-modal weight profile: condition num-
bers κ+ on the left and the number of CGLS iterations on the right.

Average results among 25 generations are shown in solid (HeCS)

and in the dash (original system); colored areas around the solid

line show the dispersion among the generated complexes. 106

VI.3 Preconditioning quality for enriched triangulations with a varying

number of vertices m0 = 25, 100, 400, 1600 and sparsity patterns

m2⧸q(m1) and dependent min-rule weight profile with folded nor-
mal edge weights: condition numbers κ+ on the left and the num-

ber of CGLS iterations on the right. Average results among 25

generations are shown in solid (HeCS) and in the dash (original

system); colored areas around the solid line show the dispersion

among the generated complexes. 106

7

VI.4 Comparison of the preconditioning quality between HeCS(solid),

shifted ichol (semi-transparent) and original system (dashed) for

the enriched triangulation on m0 = 25 vertices and varying spar-

sity patterns ν and dependent min-rule weight profile with uniform

edge weights: condition numbers κ+ on the left and the number of

CGLS iterations on the right. Average results among 25 genera-

tions are shown in solid (HeCS and ichol) and in the dash (original

system); colored areas around the solid line show the dispersion

among the generated complexes. 107

List of Tables

1 Naming conventions . 32

2 Topological instability of the transportation networks: filtered

zone networks with the corresponding perturbation norm ε

and its percentile among w1(·) profile. For each simplicial
complex, the number of nodes, edges, and triangles in V2(K)
are provided alongside the initial number of holes β1. The

results of the algorithm consist of the perturbation norm, ε,

computation time, and approximate percentile p. 69

List of Algorithms

1 Pseudo-code of the complete constrained- and free-gradient

flow. 62

2 Single Run of The Constrained Gradient Flow. 63

3 Conjugate Gradient Method [HS+52, BES98] 77

4 GREEDY COLLAPSE(K): greedy algorithm for the weak col-
lapsibility . 93

5 HEAVY SUBCOMPLEX(K,W2): construction a heavy collapsi-
ble subcomplex 100

8

I Introduction

Multi-agent systems with structured interactions between the agents are

ubiquitous and omnipresent throughout various areas of research and are used

to model a significant amount of natural systems via networks of interac-

tions. In such systems, the relational data can be induced by the geometry

of the system or spatial reasoning (for instance, in the case of transporta-

tion networks, intersections/stops of public transport are connected through

the preexisting physical driving routes; alternatively, in the case of opinion

spreading, the geometry of the system is facilitated through the structure of

human interactions), or by the functionality of the interactions (for instance,

in gene regulatory networks or networks of chemical reactions only certain

agents, or substances, can possibly interact with each other). Even systems

with a perceived absence of the underlying structure frequently exist in the

confinement of the trivial, uniform, or regular governing network: as a result,

the dynamics of the system of particles on a simple regular lattice may be

reduced into a mean-field model in the thermodynamic limit. At the same

time, accounting for a less regular structure of interactions may greatly affect

the system’s evolution and principle statistics.

Graph models containing the set of system’s agents and their pairwise

interactions are a natural way to describe such networks of interactions. As

a consequence of a high level of abstraction, graph models over the years

have been introduced in virtually every area of research and have provided

a uniquely useful machinery allowing the injection of the interacting struc-

ture into the system dynamics and into the abstract mechanisms of machine

learning(thus developing Graph Neural Networks, GNNs), as well as provid-

ing the insight on the system solely based on the topology of interactions,

e.g. via node importance, centrality measures, label spreading, etc. Under-

standing structural features, e.g. degree distribution, allows one to classify

systems through their structure (scale-free, preferential attachment, hyper-

bolic, small-world networks, etc.) and define and assess the effect of the

regularity of the structure (homophily), whilst random graphs models allow

to separate meaningful structural phenomena from randomly occurring ones.

However, graph models by design fail to capture non-dyadic (higher-order)

patterns of interactions present in various natural systems. For instance,

a typical chemical reaction would involve one or more catalyzers besides

two reacting substances; similarly, genes are typically regulated by several

factors (enzymes) in gene regulatory networks; in the same manner, the

9

majority of social interactions are non-pair-wise (e.g. coauthorships in a

coauthorship graph are naturally higher-order interactions since a scientific

paper as an “interaction” may encompass any number of researchers from

one to several hundred). Moreover, in the scope of topological data analysis

(TDA), restriction to the case of only pairwise interaction severely limits

the ability to establish the system’s topological features and more intrinsic

topology in general.

This reasoning has motivated the development of various methods and

models incorporating higher-order (non-linear) structures into classical (lin-

ear) graph models: motifs, hypergraphs, line graphs, cell and simplicial com-

plexes, etc. In that sense, motifs incorporate higher-order structures through

the specific repeating subgraphs or neighborhoods in the linear structure that

can additionally affect system dynamics, e.g. promote synchronization or

facilitate a faster label spreading; additionally, assuming chosen motifs are

functionally significant, the rate of its occurrence can be used as a precursor

of a feature for network classification tasks. Hypergraphs, however, provide

a more general model for higher-order interactions where each interaction

as a subset of the set of nodes (agents) is denoted as hyperedge; by de-

sign, such models are larger and typically sparse and generalize a sufficient

number of graph-related properties and features. Specifically, the transition

from a linear graph model to a hypergraph can fasten the synchronization

between nodes and improve label spreading. Nevertheless, by its definition,

every matrix-based property of the classical graph models (adjacency matrix,

various graph Laplacians, etc.) would now require a much less comprehen-

sible tensor model in the case of hypergraphs. Alternatively, one can try to

avoid tensor models by introducing the line graph of a hypergraph, where

each hyperedge is assigned a node, and the connection corresponds to the

adjacency. Still, such graphs were shown to struggle to convey the same

topological insight, not to mention their explosively growing size. Although

one should not discard all the advances made with such models, one may

also try to obtain a more tractable higher-order generalization that does not

require tensor or line graph extensions.

As a result, more structured or restricted types of hypergraphs, such as

cell and simplicial complexes, have been introduced. In the case of a simpli-

cial complex K, each interaction in the system is a simplex with an inclusion
rule: every face of the simplex from the complex should also remain in the

complex; besides the immediate geometric interpretation, one can also refer

to the case of social interaction or co-authorship graph where the interaction

between a group of people necessarily implies the interaction between any

subset of the individuals. Simplicial complex models are clearly a restricted

case of a general hypergraph and, in that, are more topologically sound: due

10

to the inclusion principle, one can naturally relate simplices to their bound-

aries remaining in the complex through the boundary maps Bk , reminiscent

of differential operators on manifolds. As a result, one can define a discrete

counterpart of a homology group Hk which, similarly to the continuous case
in differential geometry, formally describes topological features of the sim-

plicial complex such as k-dimensional holes through higher-order Laplacian

operators Lk , sometimes known as Helmholtz operators. For instance, in

the case k = 0, the simplicial complex would coincide with a classical graph,

and the homology groupH0 would define its connected components through
the graph Laplacian L0 via Fiedler number and Fiedler vectors. As a result,

Lk operators govern higher-order dynamics on the simplicial complex and

describe random walk transitions in tasks like simplicial PageRank, and the

corresponding homology groups outline the topology of the processes inside

the simplicial complex (e.g. in brain activity or chemical reactions).

This work focuses on stability issues associated with higher-order topolo-

gies of simplicial complexes defined through homology groups. In the first

part of the current work, we pose a question of the stability of the weighted

homology group Hk : specifically, what is the minimal perturbation (e.g. in
terms of edge elimination) sufficient for changing the dimensionality of the

homology group Hk . Whilst the specific case of topological stability has

been studied before in the isolated case of the persistent homology (where

the simplicial complex is produced from a point cloud by filtering out overly

distant connections), this consideration remains uniquely suitable only for

the filtration case in which it is still computationally demanding. Instead, we

pose a more general question of the proximity of another simplicial complex

K′ with a larger homology group (dimHk(K′) > dimHk(K)) where K′ is
obtained from the original complex K via edge elimination. Whilst by design
such a question is combinatorial, one can move it to the continuous setting

by associating edge elimination to vanishing weights of the edges after the

perturbation of the weights, reducing the problem to a continuous optimiza-

tion task with a spectral target functional motivated by a spectral matrix

nearness problem. However, while the topology of the simplicial complex is

related to the spectrum of Laplacians Lk , the appropriate target spectral

functional should be carefully tailored to account for the phenomenon of ho-

mological pollution. Note that due to the homology-induced decomposition

of the space, the spectrum of higher-order Laplacian operators Lk typically

inherits part of the spectrum of the previous Laplacian Lk−1. As a result,

it may exhibit instability of the spectrum, which is not associated with the

instability of the homology group Hk (but, instead, Hk−1). We refer to the
underlying mechanism as principal spectral inheritance and to the effect of

spectral instability, which does not lead to topological one, as homological

11

pollution. Additionally, one should, in general, take into account the effects

of the dimensionality reduction of the tasks since, for example, in the case

of k = 1, edge elimination may cause the reduction of the dimension of the

underlying matrix L1, which can create additional faux zeros in the spectrum.

Finally, amongst the variety of matrix nearness methods, we will adopt the al-

ready established idea of a bi-level norm-constrained/unconstrained gradient

flow integration to optimize the corresponding spectral functional, avoid-

ing homological pollution. The performance of developed methods is then

demonstrated on illustrative examples, synthetic datasets based on the De-

launay triangulation, and real-life data on transport networks.

Topological instability in our definition asks for the graph theoretical en-

tity (e.g. “how many edges does one need to eliminate to obtain another k-

dimensional hole”) obtained through the computational framework via spec-

tral optimization. At the same time, one can ask the opposite (in spirit):

assuming a linear system Lkx = f associated with a simplicial complex is

unstable (poorly conditioned), how can one exploit the underlying structure

of the simplicial complex in order to stabilize it and develop a more efficient

solver? In terms of the homology of the simplicial complex, the solution of

such linear system is asked for during the computation of the lower part of

the spectrum of Laplacian Lk , as well as in many other applications, such as

computing stationary point of the system dynamics on the simplicial complex

(e.g. ẋ = Lkx − f) or implicit simplicial complex convolution neural net-
works. We demonstrate that due to the homological decomposition of the

space and principal spectral inheritance, it is sufficient to propose efficient

solver only for a part of the Laplacian Lk describing the action of the border

operator on simplices of the highest possible order (e.g. on triangles in the

case of L1), known as up-Laplacian L
↑
kx = f. Then, the question of stabi-

lization is the question of optimizing the condition number κ(L↑k) governing

the convergence rate of various iterative solvers such as GMRES, CG, CGLS,

and so on, which can be achieved via fast and efficient symmetric precondi-

tioning close to Cholesky or incomplete Cholesky methods. One can show

that the computation of an exact Cholesky multiplier in the general case of

L↑k , k > 0, is unfeasible and can not be easily approximated since, unlike

the case of k = 0, the corresponding Schur complements no longer belong

to the set of k-th order up-Laplacians; nevertheless, it is still possible in the

case when the corresponding simplicial complex is collapsible in the topolog-

ical sense. More precisely, we introduce the concept of weak collapsibility

as a sufficient topological property for an efficient Cholesky multiplier. We

demonstrate that the question of weak collapsibility is polynomially solvable

and can be consistently checked by a greedy algorithm; then we show that

one can efficiently precondition the original simplicial complex through the

12

fast Cholesky decomposition of its collapsible subcomplex; for this, we prove

a general result of the preconditioning quality over the set of subcomplexes

and tie it to the cumulative weight of the subcomplex, thus motivating a

search for a “heaviest possible” collapsible subcomplex. Finally, we propose

an algorithm that efficiently constructs a heavy weakly collapsible subcomplex

L and uses its Cholesky multiplier C(L) as a preconditioner for the original
up-Laplacian L↑k(K); the developed algorithm is then tested on the synthetic
triangulation dataset vis-a-vis improvement of the condition number and the

number of iterations for one of the iterative linear solvers (CGLS).

The remainder of the thesis is organized as follows: next Chapter II dis-

cusses graph models and motivations for the higher-order structures and

in-depth introduces all the machinery and notions associated with weighted

simplicial complexes and their homology groups. Chapter III formulates the

question of topological stability, describes the framework of spectral matrix

nearness problems in the general case, and discusses the principal spectral

inheritance and its effect on the spectral matrix nearness problem; then, it

formulates and demonstrates the performance of the developed bi-level op-

timization method which avoids homological pollution. In Chapter IV, the

effects of the computational stability and overall idea and convergence of

the iterative solvers are introduced. Building upon the already defined notion

of collapsible simplicial complexes, we introduce weakly collapsibility moti-

vated by the structure of Schur complements for higher-order Laplacians

and describe the heavy weakly collapsible subcomplex (HeCS) precondition-

ing method. The last chapter concludes and discusses several possible future

prospects of research.

13

II Simplicial complex as Higher-order Topology Descrip-

tion

I. From graph to higher-order models

Graph G is a pair G = (V0,V1) with V1 ⊆ V0×V0 where V0 = {v1, v2, . . . vm0}
is the set of nodes (or vertices) corresponding to agents in the system and

V1 is the collection of pairs of nodes describing the relational data (i.e. the
structure of interactions) between the nodes; we denote the overall number

of edges in the graph by m1.

One frequently considers two natural sets of graphs: undirected (such

that if [vi , vj] ∈ V1, then [vj , vi] ∈ V1, or, in other words, the order of ver-
tices in the edge does not matter) and directed (where the order of vertices

in the edge do matter), Figure I.1a and Figure I.1b. Additionally, one fre-

quently requires V1 to be a set so that an edge can enter into the graph only
one time; otherwise, such edges are known as multiple edges, Figure I.1c;

edges [vi , vi] are known as loops whose existence typically depends on the

structure of interactions graph G describes, Figure I.1d. Finally, graphs can
be generalized from the combinatorial to the weighted case where each node

and edge is assigned (typically non-negative) weights, f.i. corresponding to

the intensity of connection, resistance, etc., Figure I.1e, [W+01].

1

2

3

4

5

(a) Undirected graph

1

2

3

4

5

(b) Directed graph

1

2

3

4

(c) Undirected graph with

multiple edges

1

2

3

4

(d) Undirected graph with

loops

0.1 1.0

1.1

0.9

0.5

1

2

3

4

5

(e) Undirected weighted

graph

Figure I.1: Examples of basic graph structures

Graph models of multi-agent systems are ubiquitous throughout the sci-

ences, including chemistry, where the network is typically built between a set

14

of reactants and products evolving in time inside a closed system, [TZB96,

MDP21]; biology with concepts such as gene regulatory networks or by in-

jecting community structure into the mean-field epidemiological models like

SIR, [MV07, SB07]; to model traffic flows in the transportation network and

social interactions, [New06, YL14, GLF+19], and as a general data abstrac-

tion in a variety of machine learning frameworks via graph neural networks,

GNNs, [ZCH+20, ZJL+22].We provide several examples of real-life networks

in Figure I.2.

(a) Chemical reaction network

for C–Cl–Li–Mn–O–Y chemi-

cal system. Adapted from

[MDP21]

(b) Gene regulation network for

yeast. Adapted from [CZHZ19]

(c) Transportation network for

bycicle reach in Paris. Adapted

from [SMP+22]

Figure I.2: Examples of real-life graph networks

For each graph G, one can define a vast number of matrices containing
its structure. Here and after, we are going to consider the unweighted,

undirected graph without loops and multiple edges for simplicity. Typically,

the most common graph matrices are:

♦ incidence matrix B ∈ Rm0×m1: the matrix maps vertices to edges
directly, so Bik ̸= 0 if and only if node vi belongs to the k-th edge;
normally, if the k-th edge is [vi , vj], then one of the elements, say Bik ,

is assigned to be −1 (tail) and the other one, Bjk , is set to 1 (head).
However, one can have Bik = Bjk when the ordering is not relevant

depending on specific applications;

♦ adjacency matrix A ∈ Rm0×m0 has 1s only in elements corresponding
to existing edges: Ai j = 1 ⇐⇒ [vi , vj] ∈ V1 and Ai j = 0 otherwise.
Powers of adjacency matrix Al contain the number of paths between

each pair of nodes of length exactly l ; by definition of directed and

undirected graphs, the adjacency matrix A is symmetric (A = A⊤) if

and only if the graph G is undirected;

♦ (classical) Laplacian matrix L0 = D − A = BB⊤ where A is the
adjacency matrix and D is the diagonal matrix of nodes’ degrees:

D = diag(A1). Here, the degree of a node degvi is defined as the

number of adjacent edges from V1 and can be calculated for each
15

node as d = A1. Graph Laplacian L0 is a symmetric positive definite

matrix whose spectral properties describe various topological charac-

teristics of the structured system, and the normalized Laplacian matrix

D−1/2L0D−1/2 governs random walks on graphs.

As a product of such vast matrix machinery, graph models remain uniquely

useful and efficient for cluster and general structure detection in the systems,

opinion spreading, and nodal importance, [GS14, FH16, Fri91, Vig16, EH10].

I.I Higher-order Graph Models

At the same time, various systems naturally require more than dyadic inter-

action between agents, [BGL16, BCI+20, BGHS23]. Examples include:

♦ the majority of biochemical reactions includes more than two reagents
(or require a catalyst or an enzyme) and more than one product [KHT09];

♦ in the “science of science”, e.g. in co-authorship and co-citation net-
works such as Cora, PubMed, and DBLP, a single interaction (coau-

thoring a paper) is not limited to a pairwise interaction;

♦ similarly, social interactions, e.g. friendship graph, frequently exhibit
polyadic interactions (“a friend of a friend is a friend”), [AU18, NKL19],

etc.

As a result of an abundance of more than dyadic interactions in real-life

systems, a number of higher-order network models, such as graph motifs,

hypergraphs, cell complexes, simplicial complexes, etc., have been proposed

in recent years.

Assuming one aims to maintain the pairwise structure of the graph, one

may look for repeating patterns (subgraphs) in the given network known as

graph motifs (e.g. completely connected cliques inside social networks or

chain-like structures in the gene regulatory graphs), assuming their frequency

is statistically significant in comparison with random model baselines; con-

sidering motifs on their own implies the consideration of the higher-order

structures and frequency signatures for a number of typical motifs can then

be used to classify and characterize networks and their higher-order structure.

Moreover, graph motifs can arise in various applications in social sciences,

[NKL19, AU18] or biological regulatory networks, [SOMMA02, BKMZ11,

MSOI+02].

A direct way to introduce higher-order interactions into graph models

would be to add the sets V2 ⊆ V0×V0×V0, . . . ,Vk ⊆ Vk+10 of k-th order

interactions to the graph. Such structures are known as hypergraphs with

each interaction called hyperedge, where Vk is the set of the hyperedges of
order k . By their definition, hypergraph models have the ability to describe

various systems with higher-order interactions, assuming the interactions are

16

undirected. However, somewhat limited generalizations to the directed case

exist with head and tail sets specified per each hyperedge, [AL17]. One

frequently meets general hypergraph models that incorporate unstructured

high-order relations and provide better performance for clustering, link pre-

diction, and opinion-spreading tasks, [Ben19, TH21, TBP21].

Naturally, one aims to extend the matrix-based graph machinery to higher-

order models, but the rising complexity of such models generally prevents

direct generalizations. Indeed, the simple instance of the incidence matrix

in the case of a hypergraph naturally (although not necessarily) extends into

the incidence tensor, where each submatrix maps nodes to the hyperedges

of a chosen cardinality, or into the aggregated incidence matrix (de facto a

flattened incidence tensor), [BCI+20]. A similar argument applies to the ad-

jacency tensor. While it is undeniable that tensor models allow an impressive

amount of structure exploration on par with the pairwise case, they are still

far less tractable and computationally more involved than the classical graph

matrix models. Note that one may attempt to model the higher-order struc-

tures through the classical pairwise models (e.g. in dual structures of the

line graph), but such attempts have yet to encompass topological features

of the original hypergraph.

Simplicial complexes are a higher-order model, which is, in a sense, a

restriction of a general hypergraph where some additional structure is required

on hyperedges and, by which, allows a matrix-based description of higher-

order structures, similar to the case of pairwise graph models. We argue that

simplicial complexes and the corresponding higher-order Laplacian operators

Lk are well suited for simultaneously retaining tractability and providing a way

to incorporate higher-order structures. We dedicate the following section to

the detailed definition of simplicial complexes.

II. Simplicial Complexes

Let V0(K) = {v1, v2, . . . , vn} be a set of nodes. As discussed above, such
a set may refer to various interacting entities and agents in the system, e.g.

neurons, genes, traffic stops, online actors, publication authors, etc. Then:

Def. 1 (Simplicial Complex) The collection of subsets K of the nodal set V0(K)
is a (abstract) simplicial complex1

1 addition of the

word “abstract” to

the term is more

common in the

topological setting

if for each subset σ ∈ K all its subsets
σ′, σ′ ⊆ σ, enter K as well, σ′ ∈ K. Elements σ ∈ K are referred to as
simplices and subsets σ′ of a given simplex σ are known as its faces.

We denote a simplex σ on the set of vertices {u1, u2, . . . uk+1} ∈ V0(K)
as σ = [u1, u2, . . . uk+1]. Then, a simplex σ ∈ K on k+1 vertices is said to
be of order k , ord (σ) = k ; alternatively, we refer to it as a k-order simplex

or k-simplex. Let Vk(K) be the set of all k-order simplices in K and mk

17

the cardinality of Vk(K), mk = |Vk(K)|; then V0(K) is the set of nodes in
the simplicial complex K, V1(K) — the set of edges, V2(K) — the set of
triangles, or 3-cliques, and so on, with K = {V0(K),V1(K),V2(K) . . .}.
Note that due to the inclusion rule in Definition 1, the number of non-empty

Vk(K) is finite and, moreover, uninterrupted in the sense of the order: if
Vk(K) = ∅, then Vk+1(K) is also necessarily empty.

Def. 2 (k-skeleton) For a given simplicial complex K, a k-skeleton is defined as
a simplicial complex K(k) containing all simplices of K of order at most k ,

K(k) = ∪ki=0Vi(K) (Eqn. 1)

For instance, the 1-skeleton is the underlying graph, and the 2-skeleton of

K consists of all nodes, edges and triangles of K.

It is easy to note that the k-skeleton remains a simplicial complex: if σ ∈
K(k), then all simplices τ from the original complex K, ord (τ) ≤ ord (σ),
belong to K(k) by definition; then, by inclusion principle, all faces σ′ of σ
belong to K and ord (σ)′ < ord (σ) ≤ k , so all faces of σ are necessarily
included in the k-skeleton.

1 2

3

4

5

6

7

8

Figure II.1: Example of a simplicial complex on 8 nodes; nodes included in the

complex are shown in orange, edges — in black, and triangles — in blue.

Example

Example of Simpli-

cial Complex

Here, we provide the following example of a simplicial complex K:

V0(K) = {[1], [2], [3], [4], [5], [6], [7], [8]}
V1(K) = {[1, 2], [1, 3], [2, 3], [2, 4], [3, 4], [4, 5],

[4, 6], [4, 7], [5, 6], [5, 7], [6, 7], [6, 8]}
V2(K) = {[1, 2, 3], [4, 5, 7], [4, 6, 7], [5, 6, 7]}

(Eqn. 2)

In Figure II.1 we provide an illustration of K where we colour elements
of V0(K) (vertices) in orange, elements of V1(K) (edges) in black, and
elements of V2(K) (triangles) in blue.
Note that V3(K) = ∅, so the highest order of simplices in K is 2. Addi-
tionally, edges [4, 5], [4, 6] and [5, 6] are included in K, but the triangle
[4, 5, 6] is not; this does not violate the inclusion rule. Instead, every edge

18

and every vertex of every triangle in V2(K), as well as every vertex of every
edge in V1(K), are contained in K, fulfilling the inclusion principle.

Example

Real Life Simplicial

Complex

Extension of the graph model to simplicial complexes is frequently used in

studies of more intrinsic topological features of the system. For instance,

one can extend a graph corresponding to the protein molecule (where nodes

correspond to atoms and two nodes are connected with an edge if and only

if the distance between them falls under 4Angstrom) to a simplicial complex

with inclusion of triangles and tetrahedrons, Figure II.2.

Figure II.2: Modeling molecule’s structure of 2OFS protein via simplicial complex:

(a) surface representation; (b) graph model; (c) simplicial complex (3-skeleton).

Adapted from [WWLX22]

Compared to the definition of the hypergraph above, it is easy to see that

a simplicial complex is a particular case of a hypergraph where every hyper-

edge is enclosed with respect to the inclusion (every subset of every hyperedge

is a hyperedge). In other words, the simplicial complex contains additional

structural rigidness, which allows one to formally describe the topology of

K; as a result, one is specifically interested in the formal description of the
nested inclusion principle achieved through boundary operators defined in

the subsections below.

Prior to discussing boundary mappings, we briefly cover the algebraic

structure of such operators known as Hodge’s theory.

III. Hodge’s Theory

Two linear operators A and B are said to satisfy Hodge’s theory if and only

if their composition is a null operator,

AB = 0 (Eqn. 3)

which is equivalent to imB ⊆ kerA.

Def. 3 For a pair of operators A and B satisfying Hodge’s theory, the quotient

19

space H is defined as follows:

H = kerA⧸imB (Eqn. 4)

where each element of H is an affine space x + imB =

{x+ y | ∀y ∈ imB} for x ∈ kerA. It follows directly from the defini-
tion that H is an abelian group under addition.

kerA
imBimB

x

xH

Figure III.1: Illustration

of a harmonic represen-

tative for an equivalence

class

By Definition 3, the quotient space H is a collection (in a general sense)
of equivalence classes x+ imB. Then, each class x+ imB = xH + imB

for some xH ⊥ imB (both x, xH ∈ kerA); indeed, since the orthogonal
component xH (referred as harmonic representative) of x with respect to

imB is unique, the map xH ↔ x+ imB is a bijection.

Th II.III.1 ([Lim20, Thm 5.3]) Let A and B be linear operators, AB = 0. Then

the homology group H satisfies:

H = kerA⧸imB ∼= kerA ∩ kerB
⊤, (Eqn. 5)

where ∼= denotes the isomorphism4

4 Two vector
spaces V and W
over the same field
F are isomorphic if
there is a bijection
T : V 7→ W which
preserves addition
and scalar multipli-
cation that is, for
all vectors u, v ∈ V
and all c ∈ F

T (u+v) = T (u)+T (v), T (cv) = cT (v)

.

Proof One builds the isomorphism through the harmonic representative, as dis-

cussed above. It is sufficient to note that xH ⊥ imB ⇔ xH ∈ kerB⊤ to
complete the proof. ■

Lem III.1 ([Lim20, Thm 5.2]) Let A and B be linear operators, AB = 0. Then:

kerA ∩ kerB⊤ = ker
(
A⊤A+ BB⊤

)
(Eqn. 6)

Proof Note that if x ∈ kerA ∩ kerB⊤, then x ∈ kerA and x kerB⊤, so x ∈
ker
(
A⊤A+ BB⊤

)
. As a result, kerA ∩ kerB⊤ ⊂ ker

(
A⊤A+ BB⊤

)
.

On the other hand, let x ∈ ker
(
A⊤A+ BB⊤

)
, then

A⊤Ax+ BB⊤x = 0 (Eqn. 7)

Exploiting AB = 0 and multiplying the equation above by B⊤ and A one

gets the following:

B⊤BB⊤x = 0

AA⊤Ax = 0
(Eqn. 8)

Note that AA⊤Ax = 0 ⇔ A⊤Ax ∈ kerA, but A⊤Ax ∈ imA⊤, so by
Fredholm alternative, A⊤Ax = 0. Finally, for A⊤Ax = 0:

A⊤Ax = 0 =⇒ x⊤A⊤Ax = 0 ⇐⇒ ∥Ax∥2 = 0 =⇒ x ∈ kerA(Eqn. 9)

20

Similarly, for the second equation, x ∈ kerB⊤, which completes the proof.
■

By Theorem II.III.1 and Lemma III.1, the quotient spaceH = kerA⧸imB ∼=
ker
(
A⊤A+ BB⊤

)
, so instead of the complicated structure of the equiva-

lence classesH one can investigate a more manageable kernel of A⊤A+BB⊤
operator.

Additionally, the kernel above provides a natural decomposition of Rn.

Since AB = 0, B⊤A⊤ = 0 or imA⊤ ⊂ kerB⊤. Then, exploiting Rn =
kerA⊕ imA⊤:

kerB⊤ = kerB⊤ ∩Rn = kerB⊤ ∩
(
kerA⊕ imA⊤

)
=

=
(
kerA ∩ kerB⊤

)
⊕
(
imA⊤ ∩ kerB⊤

) (Eqn. 10)

Given Lemma III.1, kerA∩kerB⊤ = ker
(
A⊤A+ BB⊤

)
and, since imA⊤ ⊂

kerB⊤, imA⊤ ∩ kerB⊤ = imA⊤, yeilding the decomposition of the whole
space:

Th II.III.2 (Hodge Decomposition) Let A and B be linear operators, AB = 0.

Then:

Rn =

kerB⊤︷ ︸︸ ︷
imA⊤ ⊕ ker

(
A⊤A+ BB⊤

)
⊕ imB︸ ︷︷ ︸

kerA

(Eqn. 11)

IV. Boundary and Laplacian Operators

IV.I Boundary operators Bk
Each simplicial complex K has a nested structure of simplicies: indeed, if σ is
a simplex of order k , σ ∈ Vk(K), then all of (k − 1)-th order faces forming
the boundary of σ also belong to K: for instance, for the triangle {1, 2, 3} all
the border edges {1, 2}, {1, 3} and {2, 3} are also in the simplicial complex,
Figure II.1.

This nested property implies that one can build a formal map from a

simplex to its boundary enclosed inside the simplicial complex.

Def. 4 (Chain spaces) Let K be a simplicial complex; then the space Ck of formal
sums of simplices from Vk(K) over real numbers is called a k-th chain
space.

Chain spaces on their own are naturally present in the majority of the net-

work models: C0 is a space of states of vertices (e.g. in the dynamical system
ẋ = Ax, the evolving vector x ∈ C0), C1 — is a space of (unrestricted) flows
on graphs edges, and so on.

21

Example We provide an example of chains from C0, C1 and C2 in Figure IV.1:

1

−1 0

2

2 1

−3

0 0

−1

2
0

+1

-1

+0 +2

1

+1
2

-2

3
+0

4
-3

5
-1

6

+0

7 +2

8
+3

Figure IV.1: Example of chains on the simplicial complex

c0 = [1]− 2[2]− 3[4]− [5] + 2[7] + 3[8]
c1 = [1, 2]− [1, 3] + 2[2, 4] + 2[3, 4] + [4, 5]− 3[4, 6]− [5, 7] + 2[6, 7]
c2 = [1, 2, 3]− [4, 5, 7] + 2[5, 6, 7]

(Eqn. 12)

Since Ck is a linear space, the elements of Vk(K) are a natural basis of
Ck and Ck ∼= Rmk with versor vectors forming the basis and corresponding
to simplices in Vk(K). For instance, in Example 3:

c0 =
(
1 −2 0− 3 −1 0 2 3

)⊤
c1 =

(
1 −1 0 2 2 1 −3 0 −1 0 2 0

)⊤
c2 =

(
1 −1 0 2

)⊤ (Eqn. 13)

To obtain a canonical matrix representation of any operator acting on

chain spaces Ck , it is natural to order simplices in Vk(K) in some way.
Additionally, one introduces the notion of orientation of each simplex in

Ck , e.g. for simplex σ = [u1, u2, . . . uk+1] the orientation may be assigned
as the permutation sign, sgn(u1, u2, . . . uk+1). We provide examples of

oriented simplices in Figure IV.1 in the case of the lexicographical orientation

defined through the permutation sign above. Note that neither the ordering

of simplices nor their orientation should be able to substantially alter the

topological properties of the simplicial complex if defined correctly.

To form a boundary map, one aims to replicate the action of the operator

on Figure IV.2: to map a simplex (f.i. [1, 2, 3]) to some combination of faces

on its border (in case of Figure IV.2, [1, 2], [1, 3], [2, 3]). This implies that

a boundary operator Bk should map Ck onto Ck−1. Formally,

Def. 5 LetK be a simplicial complex with the corresponding family of chain spaces
Ck . Then the action of a boundary map Bk , Bk : Ck 7→ Ck−1, is defined

22

+1

−1 +1
+1

1 2

3

boundary

map

1

1

2

2

3 3

Figure IV.2: Sample action of the boundary operators

as an alternating sum:

Bk [u1, u2, . . . uk+1] =

k+1∑
i=1

(−1)i [u1, u2, . . . ui−1, ui+1, . . . uk+1](Eqn. 14)

In the case of Figure IV.1,

B2[1, 2, 3] = [1, 2]− [1, 3] + [2, 3] (Eqn. 15)

The alternating nature of the definition upholds so-called fundamental

lemma of homology stating “the boundary of the boundary is zero”. Indeed,

B1B2[1, 2, 3] = B1 ([1, 2]− [1, 3] + [2, 3]) =
= [1]− [2]− [1] + [3] + [2]− [3] = 0

(Eqn. 16)

Lem IV.2 (Fundamental Lemma of Homology, FLoH) Let K be a simplicial
complex with corresponding boundary operators Bk . Then:

BkBk+1 = 0 (Eqn. 17)

Proof It is sufficient to directly calculate the action of the composition of Bk
and Bk+1 on σ = [u1, u2, . . . uk+2]:

BkBk+1[u1, u2, . . . uk+2] = Bk

(
k+2∑
i=1

(−1)i [u1, u2, . . . ui−1, ui+1, . . . uk+2]

)
=

=

k+2∑
i=1

(−1)i Bk [u1, u2, . . . ui−1, ui+1, . . . uk+2] =

23

=

k+2∑
i=1

(−1)i
 i−1∑
j=1

(−1)j [u1, u2, . . . uj−1, uj+1, . . . ui−1, ui+1, . . . uk+2]+

+

k+2∑
j=i+1

(−1)j−1[u1, u2, . . . ui−1, ui+1, . . . uj−1, uj+1, . . . uk+2]

 =
=

k+2∑
i=1

i−1∑
j=1

(−1)i+j [u1, u2, . . . uj−1, uj+1, . . . ui−1, ui+1, . . . uk+2]+

−
k+2∑
i=1

k+2∑
j=i+1

(−1)i+j [u1, u2, . . . ui−1, ui+1, . . . uj−1, uj+1, . . . uk+2] =

=

k+2∑
i ,j=1
j<i

(−1)i+j [u1, u2, . . . uj−1, uj+1, . . . ui−1, ui+1, . . . uk+2]+

−
k+2∑
i ,j=1
j>i

(−1)i+j [u1, u2, . . . ui−1, ui+1, . . . uj−1, uj+1, . . . uk+2] = 0

(Eqn. 18)

For the final nullification, it is sufficient to notice that two terms coincide

upon the interchange i ↔ j . ■

Since we already established basis in Ck and Ck−1 via elements of Vk(K)
and Vk−1(K) respectively, for the rest of the work we assume boundary
operators Bk in the matrix form, Bk ∈ Rmk−1×mk , see an example in Fig-
ure IV.3. Matrices Bk are naturally sparse and are de facto oriented incidence

matrices for higher-order structures; specifically, as seen on Figure IV.3, B1
is known in the classical graph models as incidence matrix.

1

2

3

4

5

6

7

B1 =

[
1
2

] [
1
3

] [
2
3

] [
2
4

] [
3
5

] [
4
5

] [
4
6

] [
4
7

] [
5
6

] [
6
7

]
[1] −1 −1 0 0 0 0 0 0 0 0
[2] 1 0 −1 −1 0 0 0 0 0 0
[3] 0 1 1 0 −1 0 0 0 0 0
[4] 0 0 0 1 0 −1 −1 −1 0 0
[5] 0 0 0 0 1 1 0 0 −1 0
[6] 0 0 0 0 0 0 1 0 1 −1
[7] 0 0 0 0 0 0 0 1 0 1

B2 =

[
1
2
3

] [
4
5
6

] [
4
6
7

]
[1, 2] 1 0 0
[1, 3] −1 0 0
[2, 3] 1 0 0
[2, 4] 0 0 0
[3, 5] 0 0 0
[4, 5] 0 1 0
[4, 6] 0 −1 1
[4, 7] 0 0 −1
[5, 6] 0 1 0
[6, 7] 0 0 1

B2([1, 2, 3]) = [1, 2]− [1, 3] + [2, 3]

Figure IV.3: Left-hand side panel: example of simplicial complex K on 7 nodes and
of the action of B2 on the 2-simplex [1, 2, 3]; 2-simplices included in the complex

are shown in red, arrows correspond to the orientation. Panels on the right: matrix

forms B1 and B2 of boundary operators, respectively.

24

IV.II Homology group and Hodge Laplacians Lk
IV.II.I Homology group as Quontinent space

For a given simplicial complex K, each pair of boundary maps Bk and
Bk+1 satisfy Hodge’s theory due to the Fundamental Lemma of Homol-

ogy, Lemma IV.2, which means that this special case of quotient space
kerBk⧸imBk+1 is correctly defined:

Def. 6 (Homology group) Let K be a simplicial complex with corresponding
boundary maps Bk . Then, the quotient space:

Hk = kerBk⧸imBk+1 (Eqn. 19)

is referred as k-th homology group of the simplicial complex K.

The homology group, on its own, is an object of quite a high level of

abstraction that can be met in various areas of algebra. Instead, since Hk
connects simplices and their borders by definition, we exploit the very first

definition of the homology group in the algebraic topology as a way to define

and categorize k-dimensional holes in K, [Lim20].
Rem IV.1 The actual connection between the homology group and the correspond-

ing k-dimensional holes is quite challenging to describe: the elements of

kerBk are k-dimensional cycles (e.g. elements in kerB1 correspond to

cycles on graphs) whereas quotient by imBk+1 distinguishes between cy-

cles encircling k-dimensional holes, [Hat05]. Typically, in the continuous

case, Figure IV.4A, this notion is given by “fillability” or contractivity of

the cycles: indeed, blue and red cycles on Figure IV.4A cannot be filled or

contracted to a single point since they are encircling two different holes in

the manifold; instead, the green cycles can be filled and contracted to a

point (so it corresponds to 0 harmonic representative).

25

A B

C.1

−→

C.2

−→

C.3

−→ · · · −→

C.4

Figure IV.4: Connection between the homology group and k-dimensional holes:

contractivity (“fillability”) and non-contractivity of cycles in continuous (A) and

discrete cases (B and C): gradual contraction of a cycle not containing a hole is

given on (C1)–(C4).

This mechanism is much more tractable in the case of a simplicial complex

Figure IV.4B,C: the space imBk+1 is spanned by circulation on the bound-

aries of simplices from Vk+1(K) (shown in green triangles on Figure IV.4C).
As a result, each equivalence class in Hk starts from some cycle (in red)
and then adds and subtracts circulations around simplices from Vk+1(K),
Figure IV.4C1–C4; consequently, each cycle may contract only into a sin-

gle point (Figure IV.4C4) or k-dimensional holes (Figure IV.4B) which are

non-contractable.

Finally, although a simplicial complex K is not a manifold, it may be
seen as a discretization of a manifold, Figure IV.5. In particular, one can

show the convergence of the discrete homology group Hk to its continuous
counterpart in case of k = 1, in the thermodynamic limit, [CZHZ19, CM21];

analogous results holds for the classical graph Laplacian L0 in the case of

k = 0, [GTGHS20].

Figure IV.5: Continuous and analogous discrete manifolds with one 1-dimensional

hole (dimH1 = 1). Left pane: the continuous manifold; center pane: the dis-
cretization with mesh vertices; right pane: a simplicial complex built upon the mesh.

Triangles in the simplicial complex K are colored gray (right).

IV.II.II Elements of the Hodge decomposition as harmonic/vorticity/potential

flow

Since the pair of boundary operatorsBk andBk+1 satisfy Hodge’s theory, the

simplicial complex-specific case of Hodge’s decomposition, Theorem II.III.2,

26

holds:

Rmk =

kerB⊤
k+1︷ ︸︸ ︷

imB⊤k ⊕ ker
(
B⊤k Bk + Bk+1B

⊤
k+1

)
⊕ imBk+1︸ ︷︷ ︸

kerBk

(Eqn. 20)

Def. 7 (Hodge Laplacian Operator) Let K be a simplicial complex with cor-
responding boundary maps Bk . Then due to Theorem II.III.1 and

Lemma III.1,

Hk ∼= ker
(
B⊤k Bk + Bk+1B

⊤
k+1

)
(Eqn. 21)

Operator Lk = B
⊤
k Bk + Bk+1B

⊤
k+1 is known as k-th Hodge Laplacian

(or higher-order Laplacian) operator. Two terms L↓k = B
⊤
k Bk and L

↑
k =

Bk+1B
⊤
k+1 are known as the k-th down- and up-Laplacians, respectively.

As established above, the homology group Hk ∼= kerLk consists of har-
monic representative or harmonic chains. Elements of the remaining com-

ponents of the decomposition can be described through the analogy with

differential operator on simplicial complexes. For instance,

1. the conjugate boundary map B⊤1 is a discrete gradient on the graph:

B⊤1 [u1, u2] = [u2] − [u1]. Hence B⊤1 = grad and B1 = − div is a
divergence;

2. the conjugate boundary mapB⊤2 is a discrete curl operator: B
⊤
2 [u1, u2, u3] =

[u1, u2]− [u1, u3]+ [u2, u3] = [u1, u2]+ [u2, u3]+ [u3, u1]; note that
the fundamental lemma of homology de facto restates the widely known

fact curl grad = 0;

3. the 1-st order Hodge Laplacian operator then can be rewritten as a

composition of the differential operators:

L1 = − grad div + curl∗ curl (Eqn. 22)

The operator − grad div + curl∗ curl is known as a Helmholz oper-
ator, an analog of the continuous differential operator on manifolds,

[Han02].

Following this, the elements of imB⊤1 = im(grad) are referred to as

potential flows (since each element yi of a vector y = B
⊤
1 x is a difference

of potentials between some pair of nodes α and β forming the i -th edge)

or, frequently, gradient flows; similarly, elements of imB2 = im(curl
∗) are

vector potentials, vorticities or simply curl flows, and kerB1 and kerB
⊤
2

27

are divergence- and curl-free flows respectively (a more low-level discussion

of these two subspaces is provided further).

Rem IV.2 Considerations above provide a solid intuition but lack clear formality: in-

deed, to properly define the graph’s gradient, divergence, and curl oper-

ators, one would need to discuss alternating functions on a graph (co-

chains) and corresponding coboundary operator and cohomology, [Lim20],

and show a direct connection with discrete differential forms on manifolds.

We choose to refrain from introducing another quite abstract entity since

it should not affect the clarity of the numerical analysis of the Laplacian

operators conducted further.

IV.II.III Laplacian operators Lk
The k-th order Hodge Laplacian operator Lk = B

⊤
k Bk + Bk+1B

⊤
k+1 nat-

urally joins the boundary relational information about simplices of different

orders in K and describes the topological structure of the complex.
In its matrix form, Lk is a symmetric (L

⊤
k = Lk) and semi-positive defi-

nite operator; indeed, (x⊤Lkx = x
⊤B⊤k Bkx+x

⊤Bk+1B
⊤
k+1x = ∥Bkx∥

2+

∥B⊤k+1x∥
2 ≥ 0. Moreover, individual entries of down- and up-Laplacians

L↓k and L
↑
k describe oriented adjacencies of simplices in Vk(K). Namely,

two simplices σ, σ′ ∈ Vk(K) are upper-adjacent if they belong to the same
higher-order simplex τ ∈ Vk+1(K). Similarly, two simplices σ, σ′ ∈ Vk(K)
are down-adjacent if they have a common face τ ∈ Vk−1(K), τ ⊂ σ, σ′.
In either case, simplices σ, σ′ can be adjacent with similar or dissimilar ori-

entations: the common face in the down-adjacency can agree (e.g., edge

[1, 2] in the triangle [1, 2, 3] in Figure IV.1) or disagree (e.g., edge [1, 3] in

the triangle [1, 2, 3]) with the orientation of σ and σ′. If the common face

simultaneously agrees or simultaneously disagrees with both orientations σ

and σ′, it is referred to as a similarly oriented case and dissimilar otherwise.

The given definition immediately extends to the case of upper-adjacency.

Then

[L↓k]i j =

k + 1, if i = j

1, if i ̸= j and σi , σj are upper-adjacent with similar orientation
− 1, if i ̸= j and σi , σj are upper-adjacent with dissimilar orientation
0 otherwise

(Eqn. 23)

28

[L↑k]i j =

deg(σi), if i = j

1, if i ̸= j and σi , σj are down-adjacent with similar orientation
− 1, if i ̸= j and σi , σj are down-adjacent with dissimilar orientation
0 otherwise

(Eqn. 24)

where deg(σi) is the number of simplices in Vk+1(K) having σi as a face,
[LCK+19].

Conj. As follows from Definition 7, the homology group Hk ∼= kerLk ; hence,
elements of kerLk describe the k-dimensional holes in the simplicial complex

K. The dimensionality of the kernel of the Hodge Laplacian coincides with
the number of the k-dimensional holes and is frequently referred to as k-th

Betti number,

βk = dimkerLk (Eqn. 25)

IV.II.IV Classical Laplacian and its kernel elements

Homology groups described above are not necessarily devoted to the case

of higher-order interaction (or, equally, high-order simplicial complexes K).
Indeed, the 0-order homology group is defined correctly for 0-skeleton of any

simplicial complex, or, in other words, the classical graph.

Assuming the absent boundary of a node, B0 = 0, the 0-order Hodge

Laplacian or classical graph Laplacian L0 is defined as

L0 = B1B
⊤
1 and H0 = kerB⊤1 (Eqn. 26)

Alternatively, the graph Laplacian can be defined as L0 = D − A where A
is the adjacency matrix of the graph (ai j = 1 ⇐⇒ [vi , vj] ∈ V1(K))
and D is the diagonal matrix of nodes’ degrees (Di i = deg vi = #{vj |
[vi , vj] ∈ V1(K)} or D = diag(A1)). The classical Laplacian matrix is well-
known and has numerous applications in network science, such as spectral

clustering, random walks, graph partitioning, etc.

Elements of the homology groupH0 are relatively simple to describe: they
correspond to connected components. A subset of nodes X ⊆ V0(K) is
called a connected component if every pair of nodes vi , vj ∈ X is connected
through a path on the graph’s edges from V1(K) and no other vertex can be
added to X. Then the indicator vector of the connected component 1X falls

in the kernel of B⊤1 . Indeed, note that if x ∈ kerB⊤1 , then xi = xj for every
[vi , vj] ∈ V1(K) and xi = xj for every pair of vertices vi and vj connected by
a path, hence xi = xj for all vertices in the same connected component. It

is immediate to notice that indicators of connected components are linearly

independent and, thus, span kerB⊤1 , so β0 = kerL0 = number of connected

29

components.

Rem IV.3 Note that if the graph is connected, then it has only one connected com-

ponent with 1 ∈ kerL0 as the only indicator of the component. Then the
second smallest eigenvalue λ2 of L0 is positive. Eigenvalue λ2 is known

as Fiedler number or algebraic connectivity of the graph and can be used

as an indicator of the graph being connected: the graph is connected if

and only if the second smallest eigenvalue λ2 of its classical Laplacian L0
is strictly positive, [Fie89, Che15].

IV.II.V Kernel elements of L1
As described above, harmonic representatives from kerL0 explicitly describe

the 0-dimensional holes (connected components) in the simplicial complex

by being indicator vectors of corresponding connected components. This

notion suggests a similar possible connection between elements of kerLk
and k-dimensional holes they correspond to, although such connection is far

less trivial and tractable, as we demonstrate in the case of k = 1.5

5 we assert that

similar considera-

tions can be easily

done in a general

case

Firstly, one needs to acknowledge the mismatch between the intuitive

definition of the hole in the simplicial complex and elements of the homology

group H1. One could attempt to search for a hole as a simple cycle minimal
by inclusion such that no subset of the vertices in the cycle form another,

shorter cycle; we call such structures “naive holes”. Then, one arrives at the

following contradiction:

Example Assume that K is a simplicial complex containing a completely connected
graph of m0 nodes and V2(K) = ∅; then L1 = B⊤1 B1. Since in that case
m1 =

m0(m0−1)
2 , dim kerL1 ≤

m0(m0−1)
2 − 1. In this setup, every face

(=every triangle) is a ”naive hole”; as a result, the number of triangles is(m0
3

)
, which is asymptotically much larger than the simplest upper bound

on the dimensionality of the kernel.

Example 4 implies that the first Betti number β1 defines the number of

different kind of holes; naturally since we use the dimensionality, some type

of “linear independence” should be implied.

Let us remind that kerL1 = kerB1 ∩ kerB⊤2 , so each flow harmonic
flow x simultaneously belongs to kerB1 and kerB

⊤
2 . These subspaces can

be characterized as follows:

♦ we refer to the elements of kerB1 as balanced circulations since
this subspace contains flows with equal inflows and outflow per vertex.

Indeed, let vi be an arbitrary vertex; then, for x ∈ kerB1, it holds that∑
vj∈V0(K), vi←vj
[vj ,vi]∈V1(K)

x[vi ,vj]
=

∑
vj∈V0(K), vi→vj
[vi ,vj]∈V1(K)

x[vi ,vj]
(Eqn. 27)

30

where vi ← vj and vi → vj denote the orientation of the edges [vi , vj].
Namely, all edges on the left-hand side are influx one for the i -th vertex,

and all the edges on the right-hand side are outflux; thus, the relation

states equal total inflows and outflows at each vi ;

♦ at the same time, elements of kerB⊤2 correspond to the zero circula-
tions around each triangle in V2(K). In other words, for each triangle
[vi , vj , vk], it holds that x[vi ,vj]

+ x[vj ,vk]
+ x[vi ,vk]

= 0 (assuming

vi → vj , vj → vk , vi ← vk ; otherwise, the flow circulates around the
triangle through the edges with contradicting orientation reflected in

the “−” sign before x[vi ,vj]).

Def. 8 The flow x ∈ C1 is referred as indicator flow for each simple cycle
(v1, . . . , vp) where each [vi , vi+1] ∈ V1(K) (following the definition of
the ”naive holes” above), if x ∈ {0, 1,−1}m1 and

x[vi ,vi+1]
=

{
1, vi → vi+1
−1, vi ← vi+1

for each i and vp+1 = v1; otherwise xj = 0. Basically, this vector describes

the path through the cycle with respect to the edge orientation.

Rem IV.4 It is easy to see that if B2 ≡ 0, then any indicator flow x for any simple
cycle lies in kerB1. This does not necessarily hold for kerB

⊤
2 ; instead,

one may find the corresponding harmonic representative by the following

alternating procedure: initialize with the indicator flow x; then, update x→
x′ such that x′ ∈ kerB⊤2 (balance the circulation around each triangle);
then, fix x′ such that accumulated flow per each vertex is still 0, and repeat

until convergence.

This process is equivalent to considering the homology generator in Z⧸3Z
(which is the indicator flow), lifting it to R and then projecting it onto H1.
In the setup of Example 4 and Remark IV.4, it is clear that every naive

hole indeed lies in kerL1 and is represented by its indicator flow. Thus,

while we do not find the number of naive holes with the dimensionality of

the Hodge Laplacian’s kernel, we find the number of “essential” ones, such

that other naive holes are linearly dependent on essentials in the sense of the

indicator flows.

Example If we consider simplicial complex K consisting of the completely connected
graph on 4 vertices, C4, with V2(K) = �, we get the spectrum σ(L1) =
{0, 0, 0, 4, 4, 4}, so the kernel has dimension 3 (Figure IV.6a). Let us

31

1

2

3

4

(a) No faces in

V2(K)

1

2

3

4

(b) One (blue) face

in V2(K)

Figure IV.6: Example for the complete graph of 4 vertices; orientation is shown by

arrow, and each edge has the same weight.

order the edges lexicographically6

6 e.g. [v1, v2],

[v1, v3], [v1, v4],

[v2, v3], [v2, v4],

[v3, v4]

and consider three indicator flows:

x123 =
(
1 −1 0 1 0 0

)T
x124 =

(
1 0 −1 0 1 0

)T
x134 =

(
0 1 −1 0 0 1

)T
Then, the indicator flow x234 =

(
0 0 0 1 −1 1

)T
can be written as

x234 = x123 − x124 + x134.
Now what happens if [2, 3, 4] ∈ V2(K), as in Figure IV.6b? Then σ(L1) =
{0, 0, 3, 4, 4, 4}. This is counter-intuitive since 3 naive holes from the
previous case are still present ([1, 2, 3], [1, 2, 4] and [1, 3, 4]), but now

they are not independent in a sense that the 0-circulation through [2, 3, 4]

cycle in V2(K) binds them together.
One can interpret the latter in the following way: every “naive” hole has

a degree of freedom represented by its accumulated flow; generally, each

simplex in V2(K) eliminates one degree of freedom. At the same time,
in some configurations, the accumulated flow through the “naive” hole is

fully determined by other accumulated flows of adjacent “naive” holes (see

Figure IV.6a), thus stripping the cycle of its own degree of freedom.

We summarize all the information and terms around the subspaces in-

duced by the homology group H1 in Table 1.

Subspace Continuous counterpart Elements’ Names

kerL1 ker (− grad div + curl∗ curl) harmonic flows / chains

imB⊤1 im grad potential / gradient flows

imB2 im curl∗ vorticities / curl flows

kerB1 ker div solenoidal / balanced circulations

kerB⊤2 ker curl curl-free / irrotational flows

Table 1: Naming conventions

32

V. Weighted and Normalized Boundary Operators

In the case of classical graph models, one can frequently find a generalization

to the case of weighted graphs where nodes and edges are assigned some,

normally non-negative, weight. Thus, it is natural to consider the weighted

case for simplicial complexes:

Def. 9 (Weight functions) The family of functions wk : Vk(K) 7→ R+ mapping

each simplex from Vk(K) into strictly positive weights is called the family
of weight functions. Additionally, Wk is called a weight matrix for k-th

order simplices from Vk(K) iff Wk is diagonal and [Wk]i i = wk(σi) for
each σi ∈ Vk(K).

Upon introducing the weights Wk , one needs to extend the definition of

the boundary operators Bk to the weighted case Bk . Since each bound-

ary map Bk acts from the chain space Ck to Ck−1, f.i. edges to nodes or

triangles to edges, it is natural to weigh rows and columns of each Bk by

the corresponding weight matrices, Bk = g(Wk−1)Bkh(Wk). More impor-

tantly, the corresponding weighted homology group Hk should be properly
defined, so that BkBk+1 = 0, e.g. with g ≡ h−1. In our work, we propose
the following weighting scheme,

Bk −→ Bk = W−1k−1BkWk ,

which contains combinatorial and various particular weight choices through-

out the literature, [LCK+19, CZHZ19, SBH+20, BGB22].

Note that, from the definition Bk = W
−1
k−1BkWk and the Fundamental

Lemma of Homology, Lemma IV.2, we immediately have that BkBk+1 = 0.

Thus, the group Hk = kerBk/ imBk+1 is well defined for any choice of
positive weights wk and is isomorphic to kerLk . Note that, in general, one

could aim for a more comprehensive non-typical weighting scheme provided

the fundamental lemma of homology holds and the homology group is cor-

rectly defined.

While the homology group may depend on the weights, we observe below

that its dimension does not. Precisely, we have:

Prop. The dimension of the homology groups of K is not affected by the weights
of its k-simplicies. Precisely, if Wk are positive diagonal matrices, we have

dim kerBk = dimkerBk , dim kerB
⊤
k = dimkerB

⊤
k , dimHk = dimHk .

(Eqn. 28)

Moreover, kerBk = Wk kerBk and kerB
⊤
k = W

−1
k−1 kerB

⊤
k .

33

Proof Since Wk is an invertible diagonal matrix,

Bkx = 0 ⇐⇒ W−1k−1BkWkx = 0 ⇐⇒ BkWkx = 0.

Hence, if x ∈ kerBk , then Wkx ∈ kerBk , and, since Wk is bijective,
dim kerBk = dim kerBk . Similarly, one observes that dim kerB

⊤
k =

dim kerB⊤k .

Moreover, since BkBk+1 = 0, then imBk+1 ⊆ kerBk and imB
⊤
k ⊆

kerB
⊤
k+1. This yields kerBk ∪ kerB

⊤
k+1 = RVk = kerBk ∪ kerB⊤k+1.

Thus, for the homology group, it holds:

dimHk = dim
(
kerBk ∩ kerB

⊤
k+1

)
=

= dimkerBk + dim kerB
⊤
k+1 − dim

(
kerBk ∪ kerB

⊤
k+1

)
=

= dimkerBk + dim kerB
⊤
k+1 − dim

(
kerBk ∪ kerB⊤k+1

)
= dimHk

■

One should also note that rescaling operators Bk does not preserve the

elements of the kernel spaces themselves, so dim kerBk = dim kerBk but

kerBk ̸= kerBk . Nevertheless, all the definitions above are immediately
extendable to the weighted case. For instance, one can rewrite the charac-

terizations for flows in kerB1 and kerB
⊤
2 as done above:

x ∈ kerB1 ⇐⇒
∑

vj∈V0(K), vi←vj
[vj ,vi]∈V1(K)

w1([vi , vj])x[vi ,vj]
=

∑
vj∈V0(K), vi→vj
[vi ,vj]∈V1(K)

w1([vi , vj])x[vi ,vj]

x ∈ kerB⊤2 ⇐⇒
x[vi ,vj]

w1([vi , vj])
+

x[vj ,vk]

w1([vj , vk])
+

x[vi ,vk]

w1([vi , vk])
= 0

(Eqn. 29)

with all the homology group machinery remaining intact. As a result, the

weighted k-th order Laplacian operator has the form:

Lk = WkB
⊤
k W

−2
k−1BkWk︸ ︷︷ ︸
L
↓
k

+W−1k Bk+1W
2
k+1B

2
k+1W

−1
k︸ ︷︷ ︸

L
↑
k

(Eqn. 30)

Rem V.5 (Normalisation) Frequently, an extension of any model to the weighted

case requires some form of normalization. For instance, one can find

weighted graph Laplacians L0 in the form L0 = B1W
2
1B
⊤
1 (so W0 = I)

with the whole spectrum and various other matrix entities being scaled by

W1. Instead, assuming W0 = f (W1) allows to guarantee σ(L0) ⊂ [0;λ]
for some fixed dimensionless λ: typically, assuming the weight of the ver-

34

tex is the sum of all adjacent edges, w0(vi) =
∑
(vi ,vj)∈V1(K)

w1([vi , vj]),

one obtains σ(L0) ⊂ [0; 2].
Similarly, Wk and W

−1
k−1 in the weighted Bk can be used as a normalizing

tool depending on the relation betweenWk andWk−1 for the adjacent sim-

plices. Normalization is, however, not guaranteed for any choice of weight

functions wk(·): indeed, the unweighted combinatorial case wk(σ) = 1
satisfies the proposed weighting scheme without providing any normaliza-

tion for σ(Lk). Note that one can guarantee normalization for L
↑
k for

similar weight choices wk(σi) =
∑
[σi ,vj]∈Vk+1(K)

wk+1([σi , vj]) (where

by [σi , vj] we mean a simplicial complex that includes σi as a face with

an additional node vj), but as we discuss further, such choice of weights

maybe counter-intuitive for a lot of tasks.

Lem V.3 Let L
↑
k = Bk+1B

⊤
k+1 =

(
W−1k Bk+1Wk+1

)
·
(
W−1k Bk+1Wk+1

)⊤
with

w2k (σi) =
∑
[σi ,vj]∈Vk+1(K)

w2k+1([σi , vj]). Then σ(L
↑
k) ⊆ [0; 2].

Proof It is immediate to see that L
↑
k remains a semi-positive definite operator,

so each λ(L
↑
k) ≥ 0. Then, in the chosen weighting scheme, all diagonal

elements of L
↑
k are exactly 1:(

L
↑
k

)
i i
=
〈(
Bk+1

)
i ,· ,
(
Bk+1

)
i ,·

〉
= ∥

(
Bk+1

)
i ,· ∥
2 =

1

w2k (σi)
∥ (Bk+1Wk+1)i ,· ∥

2 =

=

∑
[σi ,vj]∈Vk+1(K)

w2k+1([σi , vj])

w2k (σi)
= 1

(Eqn. 31)

Similarly,

∑
j

(
L
↑
k

)
i j
=
∑
j

〈(
Bk+1

)
i ,· ,
(
Bk+1

)
j,·

〉
=
∑
j

1[σi ,vj]∈Vk+1(K)
w2k+1([σi , vj])

w2k (σi)
= 1

(Eqn. 32)

so by Gershgorin circle theorem, [Ger31], σ(L
↑
k) ⊆ [0; 2]. ■

Rem V.6 Symmetric normalization of the classical graph Laplacian L0 = L
↑
0 by

D−
1⧸2 where D is the diagonal matrix of nodes’ degrees (or weighted

degrees) is coherent with Lemma V.3 and yields the same bounds on the

spectrum.

Rem V.7 On the contrary to the normalization idea, where the weight of low-order

simplex wk(σi) is inferred from the weights of (adjacent) higher-order sim-

plices wk+1([σi , vj]), one frequently needs or chooses to infer the weights

of higher-order simplices from the low-order ones (e.g. weights of triangles

from the weights of edges, etc.); most frequent choices are

♦ min-rule: the weight of the triangle is the minimal weight of adjacent

35

edges, w2(τ) = min{w1(σ1), w1(σ2), w1(σ3)} where triangle τ is
formed by edges σ1, σ2, σ3, [LCK

+19];

♦ product: the weight of the triangle is the product of weights of
adjacent edges, w2(τ) =

3
√
w1(σ1)w1(σ2)w1(σ3), [CM21].

36

III Topological Stability as MNP

I. General idea of the topological stability

The concept of the homology group Hk provides a new, more detailed look
into the topology of the simplicial complex and, thus, the underlying sys-

tem/data. Moreover, curl/gradient/harmonic decomposition in the Hodge

decomposition, Theorem II.III.2, allows separating any simplicial trajectory

(e.g. random walk on Vk(K)) into the meaningful topological components.
At the same time, one can also imagine that not all structural data is perfectly

given without mistakes, random noise on the weights, or may be targeted

by attacks. For instance, simplicial complexes and graphs created by sensor

networks tend to have extra erroneous or missing connections, affecting the

structure and certainly affecting the topology. Thus, it raises a more general

question:

How stable is the homology group Hk ?

Posing such a question, one needs to determine what we mean by stability:

indeed, as stated in Proposition 1, a perturbation of weights {Wk} that
does not create vanishing weights does not change the dimensionality of the

homology group Hk but clearly alters the space of harmonic representatives
kerLk . As a result, one may be interested in a more drastic perturbation

of structure, such that it changes the dimensionality of Hk ; specifically, we
focus on finding the smallest perturbation that creates a new principal k-

dimensional hole in the complex.

Formally, suppose we are given a simplicial complexK = {V0(K),V1(K),V2(K), ...}
with weight functions w0, w1, . . ., and let βk = dimHk = dimHk be the
dimension of its k-homology. We aim to find the closest simplex on the same

vertex set V0(K), with a strictly larger number of holes.
Problem For a given weighted K and Betti number βk(K) find the closest K′ such

that V0(K′) = V0(K) and

βk(K′) ≥ βk(K) + 1 (Eqn. 33)

In this formulation, we assume that K′ is obtained only through the elim-
ination of simplices; indeed, by allowing the introduction of new weighted

edges, the question of creating a new hole becomes meaningless (since it

37

is sufficient to add an edge to compete a 4-cycle with an arbitrary small

weight).

Rem I.8 Note that Problem 1 has a natural counterpart which asks to eliminate

edges to decrease the dimensionality ofHk ; we do not discuss this problem
in the current work, but agree that improving the complexity of the direct

combinatorial approach for it would be a worthy contribution.

While following considerations and developed approach hold in the general

case of Hk , we assume the case of the 1st homology H1 for 2-skeleton K =
{V0(K),V1(K),V2(K)} and the corresponding Hodge Laplacian L1. Then,
as stated above, the topological stability of K is defined in terms of edge
elimination sufficient to increase the dimensionality of the homology group.

The concept of edge elimination is, by definition, discrete and combinatorial;

instead, we assume that the elimination of edges is modeled by the vanishing

weights w1(σi) = 0. Then perturbation of the simplicial complex K → K′
is achieved through the perturbation of weight of the edges W1. Note that

zero weights are not allowed in Proposition 1, so one loses the conservation

of the dimensionality as required by Problem 1.

Problem Let K be a simplicial complex of order at least 2 with associated edge weight
function w1 and corresponding diagonal weight matrix W1, and let β1(W1)

be the dimension of the homology group corresponding to the weights inW1.

For ε > 0, let

Ω(ε) =
{
diagonal matrices W such that ∥W∥ = ε

}
,

Π(W1) =
{
diagonal matrices W such that W1 +W ≥ 0

}
.

In other words, Ω(ε) is an ε-sphere and Π(W1) allows only non-negative

simplex weights. We look for the smallest perturbation ε such that there

exists a weight modification δW1 ∈ Ω(ε) ∩ Π(W1) such that β1(W1) <
β1(W1 + δW1).

Note that since β1 = dim kerL1, Problem 2 poses a question of the

closest matrix with specific spectral properties (in that case, a bigger ker-

nel), which is known as spectral matrix nearness problem. In the following

subsections, we provide a short overview of the gradient flow approach for the

spectral matrix nearness problem and outline several considerations necessary

to modify the classical approach for the case of Problem 2.

I.I Persistent homology as a facet of topological stability

One should also mention a preexisting, albeit somewhat restricted, way to

characterize the topological stability of a graph or simplicial complex induced

by a point cloud — the persistent homology, [OPT+17, GS23b, LLO+21].

38

The concept is defined as follows: let {xi}Ni=1 be a point cloud in R
d ,

so xi ∈ Rd . Then, for a fixed filtration parameter ε, an edge [xi , xj] is
included in the graph if and only if nodes are at most ε-close, ∥xi −xj∥ < ε,
for some chosen norm ∥ · ∥. Similarly, in case of the simplicial complex, the
simplex [x1, . . . xl] is included in the complex if and only if ∥xi − xj∥ < ε
for all 1 ≤ i , j,≤ l (it is immediate to see that such definition upholds
the inclusion principle in the definition of simplicial complex). Note that the

actual filtration mechanisms may vary, but the overall principle should remain

as described above.

One can study the topology of the generated simplicial complex through

the associated Hodge Laplacian Lk(ε), which is, as we stress in the notation,

heavily dependent on the filtration parameter ε. As a result, one can try to

disturb ε hoping for a change in the homology group Hk , which is by the
very list reminiscent of the notion of topological stability: in that case, one

asks for the value of the filtration parameter such that the topology of the

complex changes significantly (or, in more broad terms, the value of ε where

one can get a phase transition on the spectral diagram over a set of filtration

parameters), Figure I.1. Similarly to Figure I.1, one can track the evolution

of the spectrum of Lk between harmonic, curl, and gradient parts through

filtration, [GS23a].

Figure I.1: Persistent homology for the graph case. (a) Examples of growing

complexes along the increasing filtration parameter ε; (b) bar code of the existence

of connected components (solid) and holes (dashed). Adapted from [OPT+17].

It is clear, however, that persistent homology and the stability of the

persistence diagrams are primarily dependent on the setting (f.i. the existence

of the point cloud), which means that at the very least one would need an

embedding of a given simplicial complex in Rd and an appropriate choice

of the norm ∥ · ∥ and overall filtration mechanism to study the topological
stability of the complex in such a way. Additionally, the stability in terms

of the filtration parameter ε would need to be interpreted in terms of the

39

original complex; instead, we aim to provide a computational answer for

a general case of simplicial complexes without additional callbacks to the

computationally heavy case of the persistent homology via spectral matrix

nearness problems (MNPs).

We next proceed with a general description of the bi-level optimization

framework for spectral MNPs and outline the structural problem with the

direct application of the pre-existing method for Hk ; instead, we outline
the spectral relation, Theorem III.III.5, which infers complex-aware choice

of the optimization problem which requires a more sensitive approach to

optimization.

II. Spectral Matrix Nearness Problems: overview

In the scope of Problem 2, we aim to change the topology of the simplicial

complex through the minimal perturbation δW1 of the weight matrix W1
that increases the dimensionality of the kernel of the Hodge Laplacian β1. In

a broad sense, this implies obtaining the nearest (in terms of δW1) matrix

L1 with the desired spectral properties, yielding a spectral matrix nearness

problem. We proceed with a brief description of a general framework for such

tasks.

Generally speaking, for a given matrix A, a spectral matrix nearness

problem consists of finding the closest possible matrix X among the admis-

sible set with a number of desired properties. For instance, one may search

for the nearest (in some metric) symmetric positive/negative definite matrix,

unitary matrix, or the closest graph Laplacian.

Motivated by the topological meaning of kernels of Hodge Laplacians Lk ,

we assume the specific case of spectral MNPs: here one aims for the target

matrix X to have a particular spectrum σ(X). For instance in the stability

study of the dynamical system ẋ = Ax one can search for the closest Hurwitz

matrix such that Re [λi] < 0 for all λi ∈ σ(X); similarly, assuming given
matrix A is a graph Laplacian, one can search for the closest disconnected

graph (so the algebraic connectivity λ2 = 0).

Here we recite the optimization framework developed by [GL22, AEGL19,

GLS23] for the class of the spectral matrix nearness problems; one should

note, however, that this is by far not the only approach to the task, [GS17,

DT08].

II.I Target functional for optimization

Let us assume that A is a given matrix with X being a target matrix, X =

A+∆, and, instead of searching for X, we search for the perturbation matrix

∆; additionally, we assume that Ω is the admissible set containing all possible

perturbations ∆ such that A+∆ exhibits desired spectral properties. In broad

40

terms, one attempts to solve the following problem

min
∆∈Ω
∥∆∥, such that A+ ∆ satisfies certain spectral properties(Eqn. 34)

For the purposes of this chapter, we search for the minimal perturbation in

terms of the Frobenius norm, ∥∆∥ = ∥∆∥F =
(
Tr(∆⊤∆)

)1⧸2, although in
general one can search for the minimal perturbation in other norms.

One may transform the optimization task above into a minimization prob-

lem for a target functional F (∆, A) such that its constrained minimum cor-

responds to A + ∆ exhibiting desired properties. In the case of the spec-

tral MNP, one normally has the target functional directly dependent on

the spectrum of A + ∆, F (A + ∆) = F
(
λ(A+ ∆), λ(A+ ∆)

)
where

λ(A + ∆) is an eigenvalue of the perturbed matrix A + ∆ and λ is a com-

plex conjugate. To properly define a continuous optimization problem, we

assume a smooth-enough target functional F (λ, λ) : C×C 7→ R such that

F (λ, λ) = F (λ, λ), e.g. F (λ, λ) = Reλ+λ2 or F (λ, λ) = |λ|2 = λλ. In
the scope of Hodge Laplacian operators, all considered matrices are symmet-

ric semi-positive definite, so one can omit the dependence on the conjugate

λ since σ(Lk) ∈ R. Additionally, depending on the task at hand, the target
functional F may depend on a number of eigenvalues of several matrices or

their eigenvectors.

Rem II.9 Note that even if the original general matrix nearness problem by itself

may be combinatorial, we build a continuous facet for it that is suitable

for a continuous optimization routine. For instance, the search for the

closest disconnected graph for a given graph Laplacian L0 is combinatorial

by definition (since we look for the set of edges to eliminate, or, in other

words, a set of matrix entries to eliminate). At the same time, it can be

reformulated as a continuous optimization task by bringing the weights of

the edges to 0 as a way to model their elimination.

Example (Contractivity of the dynamical system) Let us assume a dynamical system

ẋ = Ax; then the contractivity of the solution is guaranteed by the one-

sided Lipshitz condition:

1

2

d

dt
∥x− y∥2 = ⟨A(x− y), x− y⟩ ≤ C∥x− y∥2 (Eqn. 35)

with C = λmax

(
A+A∗
2

)
< 0 being the negative logarithmic norm of

the matrix. Thus, if one aims to find the nearest matrix governing a

contractive dynamical system, the utmost right eigenvalue λmax of the

symmetrized operator A+A
∗

2 needs to be moved to the negative hyperplane

(so λmax

(
A+A∗
2

)
< 0). To achieve this, one may opt to use it as the

41

target eigenvalue in the functional, F (λ, λ) = λmax

(
A+A∗
2

)
.

For the purposes of this work, we assume that F (λ, λ) = 0 if and only

if perturbed A + ∆ lands in the set with desired spectral properties (e.g.

every time the graph become disconnected, target functional vanishes) and

F (λ, λ) > 0 otherwise.

II.II Formulation as a bi-level optimization task

Given the target functional of the target eigenvalue F (λ(A+∆), λ(A+∆)),

it is convenient to write the perturbation ∆ = εE with ∥E∥ = 1, so that
ε directly models the norm of the perturbation ∆, which can be interpreted

as the perturbation budget, while the matrix E models the shape of the

perturbation. Then, MNP given by Equation (34) can be rewritten as:

min
ε≥0
ε such that ∃E :

∥E∥ = 1
εE ∈ Ω

Fε(E) = F (λ(A+ εE), λ(A+ εE)) = 0

,(Eqn. 36)

where Ω is a constraints set. Clearly, the set {E | Fε(E) = 0} is, in general,
not trivial to obtain, and running an optimization routine on it is even less

trivial. Instead, as a way to approach problem 36, one can introduce the

following bi-level optimization procedure:

1. inner level: for a fixed perturbation norm ε find the optimal shape of

the perturbation E(ε) such that Fε(E(ε)) is minimal:

E(ε) = argminE, ∥E∥=1
εE∈Ω

Fε(E) (Eqn. 37)

2. outer level: find the smallest possible perturbation norm ε∗ > 0 such

that Fε∗(E(ε
∗)) = 0 assuming existence of solution:

ε∗ = argminε>0 Fε(E(ε)) (Eqn. 38)

In the proposed scheme, the outer level is a root search/optimization problem

for a single-variable function Fε(E(ε)), albeit not easily obtainable, with a

wide variety of solution methods. Given the complex nature of E(ε), one

should aim to minimize the number of calls to Fε(E(ε)) in the outer level.

At the same time, the inner level is a constrained matrix optimization

problem. Additionally, it is worth noting that the eigenvalue optimization

is generally non-convex and non-smooth, and the norm-constrained gradient

42

flow on the inner level may help to deter the overall optimization procedure

away from local minima towards better optimizers.

Generally speaking, optimization on both inner and outer levels can only

guarantee the computation of an approximate solution as a local minimum.

Moreover, a global solution may be theoretically unobtainable: for instance, if

one searches for the nearest disconnected graph through the MNP on graph

Laplacian L0, the problem is famously polynomial, [DJP
+94]. However, after

the introduction of cardinality or membership constraints (requiring a certain

number of vertices or certain vertices in each component), the task is known

to become NP-hard, [DJP+94, AEGL19], while the continuous optimization

on both inner and outer levels of MNP is considered to be polynomial. In

that case, the bi-level procedure would provide an ε-approximation of the

optimal combinatorial solution in the polynomial time.

Transition to the gradient flow. We solve the resulting matrix optimiza-

tion problem 37 on the inner level min{Fε(E) : ∥E∥ = 1 and εE ∈ Ω} by
integrating the associated constrained gradient system:

Ė(t) = −P
(
∇E(t)Fε(E(t)) + κE(t)

)
s.t. ∥E(t)∥ = 1 and εE(t) ∈ Ω

(Eqn. 39)

where P is the projector on the tangent plane to the admissible set {E : εE ∈
Ω} and the term κE(t) guarantees the norm conservation E(t) = 1.
We refer to the unconstrained part of the system above, G(ε, E(t)) =

∇E(t)Fε(E(t)), as a free gradient part.
Then, the optimizer E(ε) is obtained in the limit, E(ε) = limt→∞E(t),

since we integrate the system in the direction of the anti-gradient−∇E(t)Fε(E(t))
on the admissible set. Moving from 37 to 39 is beneficial for a number of

reasons, such as the possibility of using higher-order numerical integrators

(assuming one is able to control higher-order derivatives of eigenvalues in

Fε(E(t))), but also the principal monotonicity of the functional Fε(E(t))

along the flow allowing larger steps in the numerical integration, as we will

demonstrate later.

II.III Inner level

Here, we describe the optimization procedure used on the inner level, which is

naturally divided into the computation of the free gradient and the projection

onto the appropriate set to achieve the constrained flow.

II.III.I Free gradient calculation

Let us assume that one aims to compute a free gradient of the functional

G(ε, E(t) = ∇E(t)Fε(E(t)) . (Eqn. 40)

43

By the chain rule we have

d

dt
Fε(E(t)) =

〈
G(ε, E(t)),

d

dt
E(t)

〉
(Eqn. 41)

so if Ė(t) = −G(ε, E(t)) = −∇E(t)Fε(E(t)), then d
dtFε(E(t)) =

−∥G(ε, E(t))∥ < 0 and the target functional Fε(E(t)) is non-increasing
along the flow; similar monotonicity estimation can be shown for the con-

strained case, Lemma IV.9. Moreover, it is sufficient to compute the time

derivative ddtFε(E(t)) to isolate the free gradient part G(ε, E(t)).

As a result,

d

dt
Fε(E(t)) =

d

dt
F (λ(A+ εE(t)), λ(A+ εE(t))) =

=
∂

∂λ
F (λ, λ) ·

d

dt
λ(A+ εE(t)) +

∂

∂λ
F (λ, λ) ·

d

dt
λ(A+ εE(t))

(Eqn. 42)

which requires a way to compute the time derivative of the eigenvalue λ(A+

εE(t)) following the classical result described below.

Let A0 ∈ Cn×n have a simple eigenvalue λ0 corresponding to the right
eigenvector x0 (so Ax0 = λ0x0 with x0 ̸= 0) and the left eigenvector y0
(so y∗0A0 = λ0y

∗
0 with y0 ̸= 0), normalized so that ∥x0∥ = ∥y0∥ = 1 and

y∗0x0 > 0. Let τ0 ∈ C and let A(τ) be a complex-valued matrix function
of a complex parameter τ that is analytic in a neighborhood of τ0, satisfying

A(τ0) = A0.

Th III.II.3 (Derivative of the eigenvalue) A(τ) has a unique eigenvalue λ(τ) that

is analytic in a neighborhood of τ0, with λ(τ0) = λ0

λ̇(τ0) =
1

y∗0x0
y∗0Ȧ(τ0)x0 (Eqn. 43)

We provide here a self-contained proof in the assumption of all functions

A(τ), x(τ), y(τ) being analytic in the neighborhood of τ0. One can relax

this requirement, maintaining the main result, [GLO20, HJ12].

Proof Consider the equation A(τ)x(τ) = λ(τ)x(τ) and its derivative at τ =

τ0:

Ȧ(τ0)x(τ0) + A(τ0)ẋ(τ0) = λ̇(τ0)x(τ0) + λ(τ0)ẋ(τ0) (Eqn. 44)

44

Multiplying this equation on both sides with y∗(τ0), we obtain:

y∗(τ0)Ȧ(τ0)x(τ0) + y
∗(τ0)A(τ0)ẋ(τ0) = λ̇(τ0)y

∗(τ0)x(τ0) + λ(τ0)y
∗(τ0)ẋ(τ0)

y∗(τ0)Ȧ(τ0)x(τ0) + λ(τ0)y
∗(τ0)ẋ(τ0) = λ̇(τ0)y

∗(τ0)x(τ0) + λ(τ0)y
∗(τ0)ẋ(τ0)

y∗(τ0)Ȧ(τ0)x(τ0) = λ̇(τ0)y
∗(τ0)x(τ0)

(Eqn. 45)

Noting x(τ0) = x0 and y(τ0) = y0, we get λ̇(τ0) =
y∗0Ȧ(τ0)x0
y∗0x0

. ■

Combining the results above, one can compute the free gradient of the

functional:

Th III.II.4 (Free time gradient) Let E(t) ∈ Cn×n be a continuously differentiable
matrix function in the neighborhood of t0 with the derivative Ė(t) and let

λ(t) be the target eigenvalue of A + εE(t) which is simple and has left

and right unit eigenvectors x(t) and y(t) satisfying conditions of Theo-

rem III.II.3. Then

1. Fε(E(t)) is continuously differentiable with respect to time

2. λ continuously differentiable on t in the neighborhood of t0, λ in C
1

3. let κ(t) = 1
x∗(t)y(t) be a condition number of λ(t), then

1

ε
κ(t)

d

dt
Fε(E(t)) = Re

〈
G(ε, E(t)), Ė(t)

〉
(Eqn. 46)

4. free gradient is given by

G(ε, E(t)) = 2
∂

∂λ
F (λ(A+ εE(t)), λ(A+ εE(t)))x(t)y∗(t)(Eqn. 47)

Proof Note that for ddtFε(E(t)) it is sufficient to input
d
dtλ into Equation (42).

As a result

d

dt
Fε(E(t)) =

ε

x∗(t)y(t)

(
∂

∂λ
F (λ, λ) · x∗(t)Ė(t)y(t) +

∂

∂λ
F (λ, λ) · x∗(t)Ė(t)y(t)

)
=

=
2ε

x∗(t)y(t)
Re

(
∂

∂λ
F (λ, λ)x∗(t)Ė(t)y(t)

)
(Eqn. 48)

Now, the only thing left is the trace trick:

Re

(
∂

∂λ
F (λ, λ)x∗(t)Ė(t)y(t)

)
= Re

〈
∂

∂λ
F (λ, λ)x(t)y∗(t), Ė(t)

〉
(Eqn. 49)

45

yielding the theorem. ■

II.III.II Constrained gradient flow, stationary points, and rank-1 opti-

mizers

In the integration of the inner level, Equation (39), one needs to uphold

∥E(t)∥ = 1 (so the integration remains on the unit sphere) and εE(t) ∈ Ω.
While the admissible set Ω is highly dependent on the task and may be quite

complicated to project onto, one can always easily obtain a norm-preserving

constrained flow. Indeed, if ∥E(t)∥F = 1, then ∥E(t)∥2F = 1 and

d

dt
∥E(t)∥2F = 1 ⇐⇒ 2Re

〈
E(t), Ė(t)

〉
= 0 (Eqn. 50)

Hence, one can obtain the norm preserving flow from the free gradient

system Ė(t) = −G(ε, E(t)) by introducing the modified flow Ė(t) =
−G(ε, E(t)) + κE(t).

Lem II.4 (Steepest norm-preserving descent direction) The optimal norm-

constrained descent direction for E(t) given by the system Equation (39)

can be written as:

Ė(t) = −G(ε, E(t)) + Re ⟨G(ε, E(t)), E(t)⟩E(t) (Eqn. 51)

Proof For this flow, we observe:

Ė(t) = −G(ε, E(t)) + κE(t)
0 =

〈
E(t), Ė(t)

〉
= −⟨E(t), G(ε, E(t))⟩+ ⟨E(t), κE(t)⟩

0 =
〈
Ė(t), E(t)

〉
= −⟨G(ε, E(t), E(t)⟩+ ⟨κE(t), E(t)⟩

(Eqn. 52)

so κ = Re ⟨G(ε, E(t)), E(t)⟩, which is precisely the projection of the
flow on the unit sphere in the Frobenious norm. ■

Note that in the case of non-trivial admissible set Ω, one can directly

generalize the steepest descent flow in Equation (51) given the projector P

and the fact that εE(t) ∈ Ω along the flow:

Ė(t) = −PG(ε, E(t)) + Re ⟨PG(ε, E(t)), E(t)⟩E(t) (Eqn. 53)

Lem II.5 (Stationary points) Assuming ∥G(ε, E(t))∥ ̸= 0, the following state-
ments about the stationary point of the norm-preserving gradient flow 51

are equivalent:

1. ddtFε(E(t)) = 0

46

2. Ė(t) = 0

3. E(t) is a real multiple of G(ε, E(t))

Moreover, in a stationary point, the optimizer E(t) = E(ε) is necessarily

of rank-1.

Proof Since Fε(E(t)) =
ε

x∗(t)y(t)Re
〈
G(ε, E(t)), Ė(t)

〉
and ∥G(ε, E(t))∥ >

0, ddtFε(E(t)) = 0 ⇐⇒ Ė(t) = 0 is immediate. Now, given Ė(t) = 0,

one obtains 0 = −G(ε, E(t)) + κE(t) or E(t) = 1κG(ε, E(t)).
Finally, by Theorem III.II.4 G(ε, E(t)) = 2 ∂

∂λ
F (λ(A + εE(t)), λ(A +

εE(t)))x(t)y∗(t) ∝ x(t)y∗(t) which is a rank-1 matrix, so E(t) ∝
x(t)y∗(t) is also rank-1. ■

The admissible set Ω is highly dependent on the task and may affect the

structure of the optimizer E(ε) since the projector P on its tangent space

enters the constrained flow, see Equation (39) and Equation (53); typical

examples of such constraints are sparsity pattern (where by the nature of the

task A+ εE(t) is required to maintain certain structure), non-negativity of

some entries (e.g. the weights of the simplices as we demonstrate below) or

trivial admissible set withΩ = Rn×n andP = I. Note that rank-1 optimizers

for the inner-level (see Lemma II.5) are only obtainable for P = I. In the case

of non-trivial projections (e.g. Ω as a sparsity pattern), one cannot guarantee

rank-1 since one no longer controls the part of the optimizer belonging to

ker P .

II.IV Outer level and overall optimization scheme

Assuming the integration of the flow on the inner level provides an opti-

mizer E(ε) per each ε, one needs to develop an optimization routine or a

root-finding routine for the outer level in order to find the smallest possi-

ble perturbation norm ε such that Fε(E(ε)) = 0 (or, alternatively, that

Fε(E(ε)) is the smallest possible). In a lot of cases, it is sufficient to apply

preexisting methods like bisection or the Newton method:

εk+1 = εk −
Fεk (E(εk))

d
dεFεk (E(εk)

= εk +
x(εk)

∗y(εk)

∥G(εk , E(εk))∥2
Fεk (E(εk))(Eqn. 54)

However, all those methods require an efficiently and correctly computed

optimizer E(ε) on the inner level; however, this is not guaranteed.

Note that in most cases of interest, the non-convex and non-smooth na-

ture of the spectral functionals Fε(E(t)) depend on the initialization E(0) in

the optimization routine, which makes the ability to inherit nearby optimizer

E(ε−∆ε) for small ∆ε as E(0) for Fε(E(t)) almost essential. Large jumps
in εk in the bisectional or Newton methods may prevent such inheritance. As

47

a result, one may need to adjust the outer level to leverage the inheritance

of the optimizer instead of using fast convergent routines like bisection or

Newton method.

Amid formulating the bi-level optimization routine for a general spectral

MNP, one poses a question: can such an approach be directly applied to the

weighted homology group Hk and its corresponding higher-order Laplacian
Lk? In the next section, we demonstrate a number of problems arising that

require careful consideration.

III. Direct approach: failure and discontinuity problems

In order to compute the topological stability of the weighted simplicial com-

plex K, one aims to find the minimal perturbation δW1 of the weights of
edges that increases the homology group, β1(W1) < β1(W1+ δW1), Prob-

lem 2.

To apply the developed gradient flow optimization approach for the spec-

tral matrix nearness problem, one needs to (a) reformulate Problem 2 in terms

of the spectral properties of Laplacian operators; (b) compose an appropriate

target functional F (ε, E) and (c) check the coherency of combinatorial-to-

continuous transition along the gradient flow.

Let us start from the last point: the idea of mimicking edge elimina-

tion via w1(σi) + δw1(σi) = 0 requires consistent updates of weights of

nodes and triangles: indeed, if for edge σi the perturbed weight vanishes (

w1(σi) + δw1(σi) = 0), then every triangle τ such that σi ⊂ τ should
also vanish, w2(τ) = 0 to adhere to the inclusion principle in the definition

of the simplicial complex. As a result, if w̃1(σ) = w1(σ) + δw1(σ) is the

new edge weight function, we require the weight function of the 2-simplices

to change into w̃2, defined as

w̃2(i1i2i3) = f

(
δw1(i1i2)

w1(i1i2)
,
δw1(i2i3)

w1(i2i3)
,
δw1(i1i3)

w1(i1i3)

)
· w2(i1i2i3)(Eqn. 55)

where f (u1, u2, u3) is a function such that f (0, 0, 0) = 1 and that mono-

tonically decreases to zero as ui → −1, for any i = 1, 2, 3. An example of
such f is

f (u1, u2, u3) = 1−min{u1, u2, u3} . (Eqn. 56)

Rem III.10 Note that the definition above does not restrict our simplicial complex:

we assume that initial weights are given without any requirements, and

then we introduce the weight dependency entirely for the purposes of the

optimization procedure.

48

Rem III.11 The fundamental difference between the combinatorial problem (=elim-

inating the edges) and its continuous facet of vanishing weights is that

edge elimination may reduce the problem’s dimensionality. Specifically, in

the case of Hodge Laplacian L1(K), up-Laplacian L1(K′) is a smaller af-
ter the elimination. This, however, can not happen in the case of the

vanishing weights; instead, some additional zeros may be introduced into

the spectrum of L1(δW1) that correspond to the reduced dimensions and

not to the extended kernel. This phenomenon should be carefully checked

for during the integration of the gradient flow.

Target functional in the direct approach. Aiming to add another dimen-

sion to H1(W1), one seeks to bring another 0 into the kernel of L1(W1);
in other words, if the initial dimensionality of the homology group is β1 =

dimH1(W1), one may attempt to push the first non-zero eigenvalue λβ1+1
in σ(L1) to 0 with a target functional:

F (δW1) =
1

2
λ2β1+1

(L1(W1 + δW1)) (Eqn. 57)

with an appropriate δW1. Unfortunately, the direct approach via the simple

functional F (δW1) is ultimately unsuccessful due to the spectral relations be-

tween consecutive Laplacians Lk−1 and Lk leading to homological pollution

which we describe in the following section.

III.I Principal spectral inheritance

Here, we recall a relatively direct but substantial spectral property that con-

nects the spectra of the k-th and (k + 1)-th order Laplacians.

Th III.III.5 (HOL’s spectral inheritance) Let Lk and Lk+1 be higher-order Laplacians

for the same simplicial complex K. Let Lk = L
↓
k + L

↑
k , where L

↓
k =

B
⊤
k Bk and L

↑
k = Bk+1B

⊤
k+1. Then:

1. σ+(L
↑
k) = σ+(L

↓
k+1), where σ+(·) denotes the positive part of

the spectrum;

2. if 0 ̸= µ ∈ σ+(L
↑
k) = σ+(L

↓
k+1), then the eigenvectors are

related as follows:

(a) if x is and eigenvector for L
↑
k with the eigenvalue µ, then y =

1√
µB
⊤
k+1x is an eigenvector for L

↓
k+1 with the same eigenvalue;

(b) if u is and eigenvector for L
↓
k+1 with the eigenvalue µ and

u /∈ kerBk+1, then v = 1√
µBk+1u is an eigenvector for L

↑
k

with the same eigenvalue;

49

3. for each Laplacian Lk : if v /∈ kerL
↓
k is the eigenvector for L

↓
k ,

then v ∈ kerL↑k ; vice versa, if u /∈ kerL
↑
k is the eigenvector for

L
↑
k , then v ∈ kerL

↓
k ;

4. consequently, there exist µ ∈ σ+(Lk) with an eigenvector u ∈
kerL

↑
k , and ν ∈ σ+(Lk+1) with an eigenvector u ∈ kerL

↓
k+1,

such that:

B
⊤
k Bkv = µv, Bk+2B

⊤
k+2u = νu .

Proof Note that if x is an eigenvector of L
↑
k , then for y =

1√
µB
⊤
k+1x one

obtains

L
↓
k+1y = B

⊤
k+1Bk+1

1
√
µ
B
⊤
k+1x =

1
√
µ
B
⊤
k+1L

↑
kx =

√
µB
⊤
k+1x = µy,

(Eqn. 58)

so y is an eigenvector L
↓
k+1 giving (2a).

Similarly, for (2b): if u is an eigenvector L
↓
k+1 and v =

1√
µBk+1u, then

L
↑
kv = Bk+1B

⊤
k+1

1
√
µ
Bk+1u =

1
√
µ
Bk+1L

↓
k+1u = µv;(Eqn. 59)

since in both (2a) and (2b) we ask for µ ̸= 0, joint 2(a) and 2(b) yield
(1).

Hodge decomposition, Theorem II.III.2, immediately yields the strict sep-

aration of eigenvectors between L
↑
k and L

↓
k , (3); given (3), all the in-

herited eigenvectors from (2a) fall into the kerL
↓
k+1, thus resulting into

(4). ■

In other words, the variation of the spectrum of the k-th Laplacian when

moving from one order to the subsequent one works as follows: the down-

term L
↓
k+1 inherits the positive part of the spectrum from the up-term of

L
↑
k ; the eigenvectors corresponding to the inherited positive part of the

spectrum lie in the kernel of L
↑
k+1; at the same time, the “new” up-term

L
↑
k+1 has a new, non-inherited, part of the positive spectrum (which, in

turn, lies in the kernel of the (k + 2)-th down-term).

In particular, we notice that for k = 0, since B0 = 0 and L0 = L
↑
0, the

theorem yields σ+(L0) = σ+(L
↓
1) ⊆ σ+(L1). In other terms, the positive

spectrum of the L0 is inherited by the spectrum of L1, and the remaining

(non-inherited) part of σ+(L1) coincides with σ+(L
↑
1). Figure III.1 provides

an illustration of the statement of Theorem III.III.5 for k = 0.

Theorem III.III.5 is built as a natural extension of Hodge decomposition,

Theorem II.III.2, and the structure of L
↓
k and L

↑
k ; however, it provides a

50

0 0 · · · 0 λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10 ← σ(L1)

0 0 · · · 0 λ1 λ2 0 λ4 0 0 λ7 λ8 0 λ10 ← σ(B
T
1B1)

0 0 · · · 0 0 0 λ3 0 λ5 λ6 0 0 λ9 0 ← σ(B2B
T
2)

holes µ

Figure III.1: Illustration for the principal spectrum inheritance (Theorem III.III.5)

in case k = 0: spectra of L1, L
↓
1 and L

↓
1 are shown. Colors signify the splitting of

the spectrum, λi > 0 ∈ σ(L1); all yellow eigenvalues are inherited from σ+(L0); red
eigenvalues belong to the non-inherited part. Dashed barrier µ signifies the penaliza-

tion threshold (see the target functional in Subsection IV.I) preventing homological

pollution (see Subsection III.II).

valuable description of the evolution of spectrum in terms of Lk operators.

Specifically, in the case of MNPs, one needs to take into account that small

and close-to-zero entries in σ+(Lk) may be inherited from σ+(Lk−1) and, as

such, may refer to a close (k−1)-dimensional hole instead of k-dimensional;
we describe this phenomenon in details next.

III.II Homological pollution: inherited almost disconnectedness

As the dimension of Hodge homology β1 corresponds to the number of zero

eigenvalues in L1, the intuition suggests that if L1 has some eigenvalue that

is close to zero, then the simplicial complex is “close to” having at least one

more 1-dimensional hole. There are a number of problems with this intuitive

consideration.

By Theorem III.III.5 for k = 0, σ+(L1) inherits σ+(L0). Hence, if the

weights in W1 vary continuously so that a positive eigenvalue in σ+(L0)

approaches 0, the same happens to σ+(L1). Assuming the initial graph GK
is connected, an eigenvalue that approaches zero in σ(L0) would imply that

GK is approaching disconnectedness. This leads to a sort of pollution of the
kernel of L1 as an almost-zero eigenvalue which corresponds to an “almost”

0-dimensional hole (disconnected component) from L0 is inherited into the

spectrum of L1, but this small eigenvalue of L1 does not correspond to the

creation of a new 1-dimensional hole in the reduced complex.

To better explain the problem of homological pollution, let us consider

the following illustrative example.

Example Consider the simplicial complex of order 2 depicted in Fig-

ure III.2a. In this example, we have V0 = {1, . . . , 7}, V1 =
{[1, 2], [1, 3], [2, 3], [2, 4], [3, 5], [4, 5], [4, 6], [5, 6], [5, 7], [6, 7]} and
V2 = {[1, 2, 3], [4, 5, 6], [5, 6, 7]}, all with weight equal to one: wk ≡ 1
for k = 0, 1, 2. The only existing 1-dimensional hole is shown in red,

and thus the corresponding Hodge homology is β = 1. Now, consider

perturbing the weight of edges [2, 4] and [3, 5] by setting their weights to

51

1

1 1

1

1

1 1

1

1 1

1 2

3

4

5 6

7

(a) Connected

1

1 1

ε

ε

1 1

1

1 1

1 2

3

4

5 6

7

(b) Close to discon-

nected

1

1 1

1 1

1

1 1

1 2

3

4

5 6

7

(c) Disconnected

Figure III.2: Example of the homological pollution, Example 7, for the simplicial

complex K on 7 vertices; the existing hole is [2, 3, 4, 5] (left and center pane), all
3 cliques are included in the simplicial complex and shown in blue. The left pane

demonstrates the initial setup with 1 hole; the center pane retains the hole exhibiting

spectral pollution; the continuous transition to the eliminated edges with β1 = 0 (no

holes) is shown on the right pane.

ε > 0 Figure III.2b. For small ε, this perturbation implies that the smallest

nonzero eigenvalue µ2 in σ+(L0) is scaled by ε. As σ+(L0) ⊆ σ+(L1), we
have that dim kerL1 = 1 and σ+(L1) has an arbitrary small eigenvalue,

approaching 0 with ε→ 0.
At the same time, when ε→ 0, the reduced complex obtained by removing
the zero edges as in Figure III.2c does not have any 1-dimensional hole,

i.e. β1 = 0. Thus, in this case, the presence of a very small eigenvalue

µ2 ∈ σ+(L1) does not imply that the simplicial complex is close to a
simplicial complex with a larger dimension of the Hodge homology.

To mitigate the phenomenon of homological pollution, in our spectral-

based functional for Problem 2, we include a term that penalizes the spectrum

of L0 from approaching zero. To this end, we observe below that a careful

choice of the vertex weights is required.

The smallest non-zero eigenvalue of the Laplacian µ2 ∈ σ(L0) is directly
related to the connectedness of the graph GK. This relation is well-known
and dates back to the pioneering work of Fiedler [Fie89]. In particular, as µ2
is a function of node and edge weights, the following generalized version of

the Cheeger inequality holds (see e.g. [TH18])

1

2
µ2 ≤ h(GK) ≤

(
2µ2 max

i∈V0

deg(i)

w0(i)

)1/2
, (Eqn. 60)

where h(GK) is the Cheeger constant of the graph GK, defined as

h(GK) = min
S⊂V0

w1(S,V0\S)
min{w0(S), w0(V0\S)}

,

with w1(S,V0\S) =
∑
i j∈V1:i∈S,j /∈S w1(i j), deg(i) =

∑
j :i j∈V1 w1(i j),

and w0(S) =
∑
i∈S w0(i).

We immediately see from (60) that when the graph GK is disconnected,

52

then h(GK) = 0 and µ2 = 0 as well. Vice-versa, if µ2 goes to zero, then
h(GK) decreases to zero too. While this happens independently of w0 and
w1, if w0 is a function of w1, then it might fail to capture the presence of

edges whose weight is decreasing and is about to disconnect the graph.

To see this, consider the example choice w0(i) = deg(i), the degree of

node i in GK. Note that this is a very common choice in the graph literature,
with several useful properties, including that no other graph-dependent con-

stant appears in the Cheeger inequality (60) other than µ2. For this weight

choice, consider the case of a leaf node, a node i ∈ V0 that has only one
edge i j0 ∈ V1 connecting i to the rest of the (connected) graph GK via the
node j0. If we set w1(i j0) = ε and we let ε decrease to zero, the graph

GK is approaching disconnectedness and we would expect h(GK) and µ2 to
decrease as well. However, one easily verifies that both µ2 and h(GK) are
constant with respect to ε in this case, as long as ε ̸= 0.
In order to avoid such a discontinuity, in our weight perturbation strategy

for the simplex K, if w0 is a function of w1, we perturb it by a constant shift.
Precisely, if w0 is the initial vertex weight of K, we set w̃0(i) = w0(i) + ϱ,
with ϱ > 0. So, for example, if w0 = deg and the new edge weight function

w̃1(σ) = w1(σ) + δw1(σ) is formed after the addition of δW1, we set

w̃0(i) =
∑
j [w1(i j) + δw1(i j)] + ϱ.

III.III Dimensionality reduction: faux edges

Another source of spectral pollution for L1 stems from the discrepancy be-

tween the original and the “reduced” complexes and from the presence of

edges that are not adjacent to any 2-simplex. This is primarily driven by the

underlying reduction of the dimensionality.

When the weight of an edge σ is moved to zero, we are formally reducing

the initial complex K to a smaller K̃ with V1(K̃) = V1 \ {σ}. The Hodge
Laplacian of K̃ has dimension |V1| − 1, and the dimension of its kernel
β̃1 is the dimension of the corresponding first homology. However, in our

perturbative approach, we want to maintain the dimension of L1 unchanged

to be able to explore the set of possible perturbations Ω(ε) ∩ Π(W1) in a
continuous way. When the weight of σ decreases to zero, we create a “faux”

edge which corresponds to a zero row in B1 and thus a zero row and zero

column in L
↓
1 = B

⊤
1 B1. If σ is not adjacent to any 2-simplex in K, then

the same row and column are also zero in L
↑
1 = B2B

⊤
2 and in the whole

Hodge Laplacian L1. Therefore, a faux edge creates a 0 row and column

in L1, creating an additional 0 entry in the spectrum of L1, which does not

correspond to a different homology for the reduced complex K̃. In other
words, when quantifying β̃1 from the kernel of the perturbed L1, we need to

rule out the number of 0-rows in L1.

53

Rem III.12 Note that in the general case, “faux” edges can create additional zero

rows and columns also in L
↑
1 even if the edge σ has some adjacent tri-

angles from V2(K). Specifically, this could happen if the weight update
w̃2 is not properly defined, e.g. does not vanish when the edge vanishes

or vanishes asymptotically faster (for instances, the min-rule scheme, i.e.

Equation (56) has neither of these problems).

As a result, one needs to modify the target functional Fε(E) in such a way

that it avoids homological pollution and faux edges in accordance with the

spectral inheritance principle, Theorem III.III.5. We propose such functional

and perform all the necessary calculations for the optimization routine next.

IV. Functional, Derivative, and Alternating Scheme for Topolog-

ical Stability
IV.I Target Functional and Main Problem for Lk
We are now in the position to formulate our proposed spectral-based func-

tional, whose minimization leads to the desired small perturbation that changes

the first homology of K. In the notation of Problem 2, we are inter-
ested in the smallest perturbation ε and the corresponding modification

δW1 ∈ Ω(ε) ∩Π(W1) that increases β1, where Ω(ε) is the set of diagonal
matrices W such that ∥W∥ = ε and Π(W1) contains diagonal matrices W
avoiding negative weights, W1 +W ≥ 0.
As ∥δW1∥ = ε, for convenience we indicate δW1 = εE with ∥E∥ = 1

so E ∈ Ω(1) ∩ Πε(W1), where Πε(W1) = {W | εE ∈ Π(W1)}. For
the sake of simplicity, we will omit the dependencies and write Ω and Πε
when there is no danger of ambiguity. Finally, let us denote by β1(ε, E) the

first Betti number corresponding to the simplicial complex perturbed via the

edge modification εE. With this notation, we can reformulate Problem 2 as

follows:

Problem Find the smallest ε > 0, such that there exists an admissible perturbation

E ∈ Ω ∩ Πε with an increased number of holes, i.e.

min
{
ε > 0 : β1(ε, E) ≥ β1 + 1 for some E ∈ Ω ∩ Πε

}
(Eqn. 61)

where β1 = β1(0, ·) is the first Betti number of the original simplicial com-
plex.

Finally, in order to approach Problem 3 and complete the framework of

spectral matrix nearness problems established in Section II, one needs the

objective functional F (ε, E), its free gradient G(ε, E) = ∇EF (ε, E) and
the projector P on the tangent plane to the admissible set Πε to integrate

the constrained flow:

Ė(t) = −PG(ε, E(t)) + Re ⟨PG(ε, E(t)), E(t)⟩E(t) (Eqn. 62)

54

We introduce a target functional Fε(E), based on the spectrum of the

1-Laplacian L1(ε, E) and the 0-Laplacian L0(ε, E), where the dependence

on ε and E is to emphasize the corresponding weight perturbation is of the

form W1 7→ W1 + εE.
We aim to move a positive entry from σ+(L1(ε, E)) to the kernel. At

the same time, assuming the initial graph GK is connected, one should
avoid the inherited almost disconnectedness with small positive entries of

σ+(L0(ε, E)). As, by Theorem III.III.5 for k = 0, σ+(L0(ε, E)) = σ+(L
↓
1(ε, E)),

the only eigenvalue of L1(ε, E) that can be continuously driven to 0 comes

from L
↑
1(ε, E). For this reason, let us denote the first non-zero eigenvalue

of the up-Laplacian L
↑
1(ε, E) by λ+(ε, E). The proposed target functional

is defined as:

Fε(E) =
λ+(ε, E)

2

2
+
α

2
max

(
0, 1−

µ2(ε, E)

µ

)2
(Eqn. 63)

where α and µ are positive parameters, and µ2(ε, E) is the first nonzero

eigenvalue of L0(ε, E). As recalled in Subsection III.II, µ2(ε, E) is an alge-

braic measure of the connectedness of the perturbed graph, thus the whole

second term in (63) “activates” when such algebraic connectedness falls

below the threshold µ.

By design, Fε(E) is non-negative and is equal to 0 iff λ+(ε, E) reaches

0, increasing the dimension of H1. Using this functional, we recast the
Problem 3 as

min {ε > 0 : Fε(E) = 0 for some E ∈ Ωε} (Eqn. 64)

Rem IV.13 When GK is connected, dim kerL0 = 1 and, by the Theorem III.III.5,
dim kerL

↑
1 = dimkerL1 + (n − dim kerL0) = n + β1 − 1, so the first

nonzero eigenvalue of L
↑
1 is the (n + β1)-th. While (n + β1) can be a

large number in practice, we will discuss in Section V.I an efficient method

that allows us to compute λ+(ε, E) without computing any of the previous

(n + β1 − 1) eigenvalues.

Rem IV.14 Note that since we moved to consider λ+ ∈ L
↑
1, the absence of faux

edges in the flow is guaranteed to the weighing scheme, Equation (56),

and edges not adjacent to any triangle do not affect the spectral profile

anymore.

55

IV.II Free gradient calculation

Let us denote the perturbed weight matrix by W̃1(t) = W1 + εE(t), and

the corresponding W̃0(t) = W0(W̃1(t)) and W̃2(t) = W2(W̃1(t)), defined

accordingly as discussed in Subsection IV.I and Section III. From now on we

omit the time dependence for the perturbed matrices to simplify the notation.

Since W̃0, W̃1 and W̃2 are necessarily diagonal, by the chain rule we have
˙̃Wi(t) = ε diag

(
J i1Ė1

)
, where 1 is the vector of all ones, diag(v) is the

diagonal matrix with diagonal entries the vector v, and J i1 is the Jacobian

matrix of the i -th weight matrix with respect to W̃1, which for any u1 ∈ V1
and u2 ∈ Vi , has entries [J i1]u1,u2 =

∂
∂w̃1(u1)

w̃i(u2) .

Next, in the following two lemmas, we express the time derivative of the

Laplacian L0 and L
up
1 as functions of E(t). The proofs of these results are

straightforward and omitted for brevity. In what follows, Sym[A] denotes

the symmetric part of the matrix A, namely Sym[A] = (A+ A⊤)/2.

Lem IV.6 (Derivative of L0) For the simplicial complex K with the initial edges’
weight matrix W1 and fixed perturbation norm ε, let E(t) be a smooth

path and W̃0, W̃1, W̃2 be corresponding perturbed weight matrices. Then,

1

2ε

d

dt
L0(t) = W̃

−1
0 B1W̃1ĖB

⊤
1 W̃

−1
0 − Sym

[
W̃−10 diag

(
J01 Ė1

)
L0
]
.(Eqn. 65)

Proof By definition, L0(t) = W̃
−1
0 B1W̃

2
1B
⊤
1 W̃

−1
0 where W̃1 = W1 + εE(t).

Then

d

dt
L0(t) =

(
d

dt
W̃−10

)
B1W̃

2
1B
⊤
1 W̃

−1
0 + W̃

−1
0 B1

d

dt

(
W̃ 21
)
B⊤1 W̃

−1
0 +

+ W̃−10 B1W̃
2
1B
⊤
1

(
d

dt
W̃−10

)
(Eqn. 66)

Then it is sufficient to note for a diagonal matrix W̃0 the derivative is

given by ddt W̃
−1
0 = −W̃−20

d
dt W̃0 = −W̃

−1
0
d
dt W̃0W̃

−1
0 ; finally,

d
dt W̃

2
1 =

2εW̃1Ė and
d
dt W̃0 = diag

(
J01 Ė1

)
by the definition of matrix J01 . ■

Lem IV.7 (Derivative of L
↑
1) For the simplicial complex K with the initial edges’

weight matrix W1 and fixed perturbation norm ε, let E(t) be a smooth

path and W̃0, W̃1, W̃2 be corresponding perturbed weight matrices. Then,

1

2ε

d

dt
L
↑
1(t) = −Sym

[
W̃−11 B2W̃

2
2B
⊤
2 W̃

−1
1 ĖW̃

−1
1

]
+W̃−11 B2W̃2 diag

(
J21 Ė1

)
B⊤2 W̃

−1
1

56

Proof Similarly to Lemma IV.6, L
↑
1 = W̃

−1
1 B2W̃

2
2B
⊤
2 W̃

−1
1 and

d

dt
L
↑
1 =

(
d

dt
W̃−11

)
B2W̃

2
2B
⊤
2 W̃

−1
1 + W̃

−1
1 B2

(
d

dt
W̃ 22

)
B⊤2 W̃

−1
1 +

+ W̃−11 B2W̃
2
2B
⊤
2

(
d

dt
W̃−11

)
(Eqn. 67)

with the same formula for the derivative of inverse d
dt W̃

−1
1 =

−εW̃−11 ĖW̃
−1
1 and ddt W̃

2
2 = 2W̃2 diag

(
J21 Ė1

)
. ■

Combining Theorem III.II.3 with Lemma IV.6 and Lemma IV.7, we obtain

the following expression for the free gradient of the functional.

Th III.IV.6 (The free gradient of Fε(E)) Assume the initial weight matrices W0,

W1 and W2, as well as the parameters ε > 0, α > 0 and µ > 0,

are given. Additionally, assume that E(t) is a differentiable matrix-valued

function such that the first non-zero eigenvalue λ+(ε, E) of L
↑
1(ε, E)

and the second smallest eigenvalue µ2(ε, E) of L0(ε, E) are simple. Let

W̃0, W̃1, W̃2 be corresponding perturbed weight matrices; then:

1

ε
∇EFε(E)(t) = λ+(ε, E)•

•

[
Sym

[
−W̃−11 B2W̃

2
2B
⊤
2 W̃

−1
1 x+x

⊤
+W̃

−1
1

]
+

+ diag
(
J21
⊤
diagvec

(
B⊤2 W̃

−1
1 x+x

⊤
+W̃

−1
1 B2W̃2

))]
−

−
α

µ
max

{
0, 1−

µ2(ε, E)

µ

}
•

[
B⊤1 W̃

−1
0 y2y

⊤
2 W̃

−1
0 B1W̃1−

− diag
(
J01
⊤
diagvec

(
Sym[W̃−10 y2y

⊤
2 L0]

))]
where x+ is a unit eigenvector of L

up
1 corresponding to λ+, y2 is a unit

eigenvector of L0 corresponding to µ2, and the operator diagvec(X) re-

turns the main diagonal of X as a vector.

Proof To derive the expression for the gradient ∇EF , we exploit the chain rule
for the time derivative: λ̇ = ⟨ ddtA(E(t)), xx

⊤⟩ = ⟨∇Eλ, Ė⟩. Then,
it is sufficient to apply the cyclic perturbation for the scalar products of

Lemma IV.6 and Lemma IV.7 with x+x
⊤
+ and y2y

⊤
2 respectively. The final

transition requires the formula:

⟨A, diag(BE1)⟩ =
〈
diag

(
B⊤(diagvecA)

)
, E
〉
.

57

Indeed,

⟨A, diag(BE1)⟩ = Tr
(
A⊤ diag(BE1)

)
=
∑
i

(
A⊤ diag(BE1)

)
i i

and

⟨A, diag(BE1)⟩ =
∑
i

∑
j

A⊤i j diag(BE1)j i =
∑
i

A⊤i i (BE1)i =

=
∑
i

Ai i
∑
j

(BE)i j =
∑
i ,j

Ai iBi jEj j =

=
∑
i ,j

Bi j(diagvecA)iEj j =
〈
diag

(
B⊤(diagvecA)

)
, E
〉
.

■

Rem IV.15 The derivation above assumes the simplicity of both µ2(ε, E) and

λ+(ε, E). This assumption is not restrictive as simplicity for these ex-

tremal eigenvalues is a generic property. Indeed, we observe simplicity in

all our numerical tests.

IV.III The constrained gradient system and its stationary points

In this section, we are deriving from the free gradient determined in The-

orem III.IV.6 the constrained gradient of the considered functional, that is,

the projected gradient (with respect to the Frobenius inner product) onto

the manifold Ω ∩ Πε, which consists of perturbations E of the unit norm,
which preserve the structure of W .

To obtain the constrained gradient system, we need to project the uncon-

strained gradient given by Theorem III.IV.6 onto the feasible set and also to

normalize E to preserve its unit norm. Using the Karush-Kuhn-Tucker con-

ditions on a time interval where the set of 0-weight edges remain unchanged,

the projection is done via the mapping P+G(ε, E), where

[P+X]i j =

{
Xi j , [W1 + εE]i j > 0

0, otherwise
.

Note that P+ is the projector on the tangent space of the admissible set Πε
as in Equation (39) and Equation (53); we use P+ notation to emphasize
the non-negativity constraints. As a result, we are ready to reformulate

a steepest descent direction result (Lemma II.4) for the particular case of

Problem 3:

Lem IV.8 (Direction of steepest admissible descent) Let E,G ∈ Rm1×m1 with
G given by Theorem III.IV.6, and ∥E∥ = 1. On a time interval where the

58

set of 0-weight edges remains unchanged, the gradient system reads

Ė(t) = −P+G(ε, E(t))+κP+E(t), where κ =
⟨ε, G(E(t)), P+E(t)⟩

∥P+E(t)∥2
.

(Eqn. 68)

Equation (68) suggests that the system goes “primarily” in the direction

of the antigradient −G(ε, E); thus the functional is expected to decrease
along it.

Lem IV.9 (Monotonicity) Let E(t) of unit Frobenius norm satisfy the differential

equation (68), with G given by Theorem III.IV.6. Then, Fε(E(t)) de-

creases monotonically with t.

Proof We consider first the simpler case where the non-negativity projection does

not apply so that G = G(ε, E) (without P+). Then

d

dt
Fε(E)(t) =

〈
∇EFε(E), Ė

〉
= ⟨εG(ε, E(t)), −G(ε, E(t)) + κE(t)⟩

= −ε∥G(ε, E)∥2 + ε
⟨G(ε, E), E⟩
⟨E, E⟩ ⟨G(ε, E), E⟩

= ε

(
−∥G(ε, E)∥2 +

|⟨G(ε, E), E⟩|2

∥E∥2

)
≤ 0

(Eqn. 69)

where the final estimate is given by the Cauchy-Bunyakovsky-Schwarz in-

equality. The derived inequality holds on the time interval without the

change in the support of P+ (so that no new edges are prohibited by the
non-negativity projection). ■

IV.IV Free Gradient Transition in the Outer Level

The optimization problem in the inner level is non-convex due to the non-

convexity of the functional Fε(E); we denote Fε(E) = F (ε, E) for the

clarity in this section. Hence, for a given ε, the computed minimizer E(ε)

may depend on the initial guess E0 = E0(ε).

The effects of the initial choice are particularly important in the transition

ε̂ → ε = ε̂ + ∆ε between constrained inner levels: given reasonably small
∆ε, one should expect relatively close optimizers E(ε̂) and E(ε), and, hence,

the initial guess E0(ε) being close to and dependent on E(ε).

This choice, which seems very natural, determines, however, a disconti-

nuity

F (ε̂, E(ε̂)) ̸= F (ε, E(ε̂)),

which may prevent the expected monotonicity property with respect to ε in

the (likely unusual case) where F (ε̂, E(ε̂)) < F (ε, E(ε̂)). This may happen

in particular when ∆ε is not taken small; since a Newton-like iteration drives

59

∥δW1∥ = ε+ ∆ε∥δW1∥ = ε

constrained flow
∥E(t)∥ ≡ 1

free flow
∥E(t)∥ ↑

∥∇F∥ = 0

∥∇F∥ = 0

Figure IV.1: The scheme of alternating constrained (blue, ∥E(t)∥ ≡ 1) and free
gradient (red) flows. Each stage inherits the final iteration of the previous stage

as initial E0(εi) or Ẽ0(εi) respectively; constrained gradient is integrated till the

stationary point (∥∇F (E)∥ = 0), free gradient is integrated until ∥δW1∥ = εi +∆ε.
The scheme alternates until the target functional vanishes (F (ε, E) = 0).

the choice of ∆ε, we are interested in finding a way to prevent this situation

and making the whole iterative method more robust. The goal of that is to

guarantee monotonicity of the functional both with respect to time and with

respect to ε.

When in the outer iteration we increase ε from a previous value ε̂ <

ε, we have the problem of choosing a suitable initial value for the con-

strained gradient system (68), such that at the stationary point E(ε̂) we

have F (ε̂, E(ε̂)) < F (ε, E(ε)) (which we assume both positive, that is on

the left of the value ε⋆ which identifies the closest zero of the functional).

To maintain monotonicity with respect to time and also with respect to

ε, it is convenient to start to look at the optimization problem with value ε,

with the initial datum δW1 = ε̂E(ε̂) of norm ε̂ < ε.

This means we have essentially to optimize with respect to the inequality

constraint ∥δW1∥ ≤ ε, or equivalently solve the problem (now with inequality
constrain on ∥E∥F):

E(ε) = argmin
E∈Ω,∥E∥≤1

F (ε, E)

The situation changes only slightly from the one discussed above. If

∥E∥ < 1, every direction is admissible, and the direction of the steepest
descent is given by the negative gradient. So, we choose the free gradient

flow (in the direction of the free gradient on the admissible set without the

norm conservation)

Ė = −P+G(ε, E(t)) as long as ∥E(t)∥ < 1. (Eqn. 70)

When ∥E(t)∥ = 1, then there are two possible cases. If ⟨P+G(ε, E), E⟩ ≥

60

0, then the solution of (70) has

d

dt
∥E(t)∥2 = 2 ⟨Ė, E⟩ = −2 ⟨P+G(ε, E(t)), E⟩ ≤ 0,

and hence the solution of (70) remains of Frobenius norm at most 1.

Otherwise, if ⟨P+G(ε, E), E⟩ < 0, the admissible direction of steepest
descent is given by the right-hand side of (68), and so we choose this ODE

to evolve E. The situation can be summarized as taking, if ∥E(t)∥ = 1,

Ė = −P+G(ε, E) + µE with µ = min
(
0, κ

)
(Eqn. 71)

with κ = ⟨G(ε, E), P+E⟩ /∥P+E∥2. Along the solutions of (71), the
functional F decays monotonically, and stationary points of (71) (i.e. points

such that Ė = 0) with P+G(ε, E(t)) ̸= 0 are characterized by

E is a negative real multiple of P+G(ε, E(t)). (Eqn. 72)

If it can be excluded that the gradient P+G(ε, E(t)) vanishes at an op-
timizer, it can thus be concluded that the optimizer of the problem with

inequality constraints is a stationary point of the gradient flow (68) for the

problem with equality constraints.

Rem IV.16 As a result, F (ε, E(t)) = Fε(E(t)) monotonically decreases both with

respect to time t and to the value of the norm ε, when ε ≤ ε⋆.

V. Algorithm details

In Algorithm 1, we provide the pseudo-code of the whole bi-level procedure.

The initial “α-phase” is used to choose an appropriate value for the

regularization parameter α. In order to avoid the case in which the penalizing

term on the right-hand side of (63) dominates the loss Fε(E(t)) in the early

stages of the descent flow, we select α by first running such an initial phase,

prior to the main alternated constrained/free gradient loop. In this phase, we

fix a small ε = ε0 and run the constrained gradient integration for an initial

α = α∗. After the computation of a local optimum E∗, we then increase α

and rerun for the same ε0 with E∗ as the starting point. We iterate until no

change in E∗ is observed or until α reaches an upper bound α∗.

The resulting value of α and E∗ are then used in the main loop where we

first increase ε by the chosen step size, we rescale Ei by 0 < ε/(ε+∆ε) < 1,

and then we perform the free gradient integration described in Section IV.IV

until we reach a new point Ei on the unit sphere ∥Ei∥ = 1. Then, we
perform the inner constrained gradient step by integrating Equation (68),

61

Algorithm 1 Pseudo-code of the complete constrained- and free-gradient

flow.

Require: initial edge perturbation guess E0; initial ε0 > 0; ε-stepsize ∆ε >
0; bounds α∗, α∗ for the α-phase;

1: α,E ← AlphaPhase(E0, ε0, α∗, α∗) ▷ for details see Subsection V.I
2: while |Fε(E)| < 10−6 do
3: ε← ε+ ∆ε
4: E ← ε

ε+∆εE ▷ before the free gradient ∥E∥ < 1
5: Ei ← FreeGradientFlow(E,∆ε, ε) ▷ see Section IV.IV
6: E ← ConstrainedGradientFlow(E, ε) ▷ see Section V
7: end while

iterating the following two-step norm-corrected Euler scheme:{
Ei+1/2 = Ei − hi (P+G(Ei , ε)− κiP+Ei) .
Ei+1 = PΠεEi+1/2/∥PΠεEi+1/2∥

(Eqn. 73)

where the second step is necessary to numerically guarantee the Euler inte-

gration remains in the set of admissible flows since the discretization does

not conserve the norm and larger steps hi may violate the non-negativity of

the weights.

In both the free and constrained integration phases, since we aim to

obtain the solution at t →∞ instead of the exact trajectory, we favor larger
steps hi given that the established monotonicity is conserved. Specifically,

if Fε(Ei+1) < Fε(Ei), then the step is accepted and we set hi+1 = βhi
with β > 1; otherwise, the step is rejected and repeated with a smaller step

hi ← hi/β; we provide detailed look in Algorithm 2.
Rem V.17 The step acceleration strategy described above, where βhi is immediately

increased after one accepted step, may lead to “oscillations” between ac-

cepted and rejected steps in the event the method would prefer to maintain

the current step size hi . To avoid this potential issue, we increase the step

length in our experiments after two consecutive accepted steps. Alterna-

tive step-length selection strategies are also possible, for example, based

on Armijo’s rule or non-monotone stabilization techniques [GLL91].

V.I Computational costs

Each step of either the free or the constrained flows requires one step of

explicit Euler integration along the anti-gradient −∇EFε(E(t)). As dis-
cussed above, the construction of such a gradient requires several sparse

and diagonal matrix-vector multiplications as well as the computation of the

smallest nonzero eigenvalue of both L
↑
1(ε, E) and L0(ε, E). The latter two

represent the major computational requirements of the numerical procedure.

Fortunately, as both matrices are of the form A⊤A, with A being either of

62

Algorithm 2 Single Run of The Constrained Gradient Flow

Require: initial perturbation E0, fixed perturbation ε
1: t ← 0 , h ← h0, i ← 1, oldVal← F (ε, E) ▷ initialization
2: while oldVal > 10−5 and i ≤ 1000 do
3: G(ε, Ei−1)← 1

ε∇EFε(Ei−1) ▷ compute gradient, Theorem III.IV.6

4: if ∥G(ε, Ei−1)∥ < 10−4 then
5: break

6: end if ▷ stop at local minimum
7: while true do

8: Ei ← normCorrectedEuler(Ei−1, h, G(ε, Ei−1)) ▷ see (??
9: newVal← F (ε, Ei) ▷ updated functional
10: if newVal < oldVal then ▷ check monotonicity
11: h ← β · h ▷ step accepted and increased
12: break

13: else

14: h ← h/β ▷ switch to the more precise step and recalculate Ei
15: end if

16: t ← t + h
17: i ← i + 1
18: end while

19: end while

the two boundary or co-boundary operators B2 and B
⊤
1 , we have that both

the two eigenvalue problems boil down to a problem of the form

min
x⊥ kerA

∥Ax∥
∥x∥

i.e., the computation of the smallest singular value of the sparse matrix A.

This problem can be approached by a sparse singular value solver based on

a Krylov subspace scheme for the pseudo inverse of A⊤A. In practice, we

implement the pseudo inversion by solving the corresponding least squares

problems

min
x
∥Lup1 (ε, E)x− b∥, min

x
∥L0(ε, E)x− b∥ ,

which, in our experiments, we solved using the least square minimal-residual

method (LSMR) from [FS11]. This approach allows us to use a precondi-

tioner for the normal equation corresponding to the least square problem.

For simplicity, in our tests, we used a constant preconditioner computed by

means of an incomplete Cholesky factorization of the initial unperturbed L
↑
1,

or L0. Possibly, much better performance can be achieved with a tailored

preconditioner that is efficiently updated throughout the matrix flow. We

explore the idea of efficient preconditioning for L
↑
1 in the second part of the

current work, Subsection VI.III; additionally, we also note that the eigenvalue

63

1

0.6 2.2

0.7

2.5

1.8 1

1.5

1.75 2

0.5 3.0

6 5

4

3

2 1

8

7

0.6 2.2

0.7

2.5

1.8 1

1.5

1.75 2

0.5 3.0

−→
6 5

4

3

2 1

8

7

Figure VI.1: Simplicial complex K on 8 vertices for the illustrative run (on the left):
all 2-simplices from V2 are shown in blue, the weight of each edge w1(ei) is given
on the figure. On the right: perturbed simplicial complex K through the elimination
of the edge [5, 6] creating additional hole [5, 6, 7, 8].

problem for the graph Laplacian L0(ε, E) may be alternatively approached

by a combinatorial multigrid strategy [ST14] or stochastic Cholesky precon-

ditioner, [KS16, Tro19].

VI. Benchmarking

VI.I Illustrative Example

We consider here a small example of a simplicial complex K of order 2 con-
sisting of eight 0-simplices (vertices), twelve 1-simplices (edges), four 2-

simplices V2 = {[1, 2, 3], [1, 2, 8], [4, 5, 6], [5, 6, 7]} and one corresponding
hole [2, 3, 4, 5], hence, β1 = 1. By design, the dimensionality of the homol-

ogy group H1 can be increased only by eliminating edges [1, 2] or [5, 6]; for
the chosen weight profile w1([1, 2]) > w1([5, 6]), hence, the method should

converge to the minimal perturbation norm ε = w1([5, 6]) by eliminating the

edge [5, 6], Figure VI.1.

The exemplary run of the optimization framework in time is shown in

Figure VI.2. The top panel of Figure VI.2 provides the continued flow of

the target functional Fε(E(t)) consisting of the initial α-phase (in green)

and alternated constrained (in blue) and free gradient (in orange) stages.

As stated above, Fε(E(t)) is strictly monotonic along the flow since the

support of P+ does not change. Since the initial setup is not pathological
with respect to the connectivity, the initial α-phase essentially reduces to a

single constrained gradient flow and terminates after one run with α = α∗.

The constrained gradient stages are characterized by a slow-changing E(t),

which is essentially due to the flow performing minor adjustments to find

the correct rotation on the unit sphere. In contrast, the free gradient stage

quickly decreases the target functional.

The second panel shows the behavior of first non-zero eigenvalue λ+(ε, E(t))

(solid line) of L
↑
1(ε, E(t)) dropping through the ranks of σ(L1(ε, E(t)))

(semi-transparent); similar to the case of the target functional Fε(E(t)),

64

0 100 200 300 400
0.000

0.002

0.004

0.006

0.008

0.010

0.012

fu
n
ct
io
n
al

F
(ε
,E

(t
))

α−stage
free gradient

constrained gradient

0 100 200 300 400
0.0

0.1

0.2

0.3

sp
ec
tr
u
m

σ
(L

1
)

target λ+

other λi

thresholdµ

0 100 200 300 400
1.00

1.25

1.50

1.75

2.00

n
o
rm

‖E
(t
)‖

0 100 200 300 400
[1 2]

[1 3]

[1 8]

[2 3]

[2 4]

[2 8]

[3 5]

[4 5]

[4 6]

[5 6]

[5 7]

[6 7]

p
er
tu
rb
a
ti
o
n
E
(t
)

−
1

−
0
.5

0
0
.5

1

1

2

3

4

5

6

7

8

ε = 0.025

1

2

3

4

5

6

7

8

ε = 0.075

1

2

3

4

5

6

7

8

ε = 0.125
1

2

3

4

5

6

7

8

ε = 0.31

Figure VI.2: Illustrative run of the framework determining the topological stability:

the top pane — the flow of the functional Fε(E(t)); the second pane — the flow of

σ(L1), λ+ is highlighted; third pane — the change of the perturbation norm ∥E(t)∥;
the bottom pane — the heatmap of the perturbation profile E(t).

λ+(ε, E(t)) monotonically decreases. The rest of the eigenvalues exhibit

only minor changes, and the rapidly changing λ+ successfully passes through

the connectivity threshold µ (dotted line).

The third and the fourth panels show the evolution of the norm of the

perturbation ∥E(t)∥ and the perturbation E(t) itself, respectively. The
norm ∥E(t)∥ is conserved during the constrained-gradient and the α- stages;
these stages correspond to the optimization of the perturbation shape, as

shown by the small positive values at the beginning of the bottom panel which

eventually vanish. During the free gradient integration, the norm ∥E(t)∥
increases, but the relative change of the norm declines with the growth of εi
to avoid jumping over the smallest possible ε. Finally, due to the simplicity

of the complex, the edge we want to eliminate, 56, dominates the flow from

the very beginning (see bottom panel); such a clear pattern persists only in

small examples, whereas for large networks, the perturbation profile is initially

spread out among all the edges.

VI.II Triangulation Benchmark

To provide more insight into the computational behavior of the method,

we synthesize here an almost planar graph dataset. Namely, we assume

N uniformly sampled vertices on the unit square with a network built by

the Delaunay triangulation; then, edges are randomly added or erased to

obtain the sparsity ν (so that the graph has 12νN(N − 1) edges overall).
An order-2 simplicial complex K = (V0,V1,V2) is then formed by letting

65

V0 be the generated vertices, V1 the edges, and V2 every 3-clique of the
graph; edges’ weights are sampled uniformly between 1/4 and 3/4, namely

w1(ei) ∼ U[14 ,
3
4].

1 2

34

5

6

7

8

Figure VI.3: Exam-

ple of Triangulation and

Holes

An example of such triangulation is shown in Figure VI.3; here, N = 8

and edges [6, 8] and [2, 7] were eliminated to achieve the desired sparsity.

102 103

10

102

ex
ec
u
ti
on

ti
m
e,

se
co
n
d
s

ν = 0.35, LSMR
LSMR, ichol

102 103
10

102

103

number of edges, m

ex
ec
u
ti
on

ti
m
e,

se
co
n
d
s

ν = 0.5, LSMR
LSMR, ichol

(a) Time (in seconds)

102 103

0.5

1.0

ex
ec
u
ti
on

ti
m
e,

se
co
n
d
s

ν = 0.35, LSMR

102 103

0.5

1.0

number of edges, m

ex
ec
u
ti
on

ti
m
e,

se
co
n
d
s

ν = 0.5, LSMR

(b) Perturbation norm, ε

Figure VI.4: Benchmarking Results on the Synthetic Triangulation Dataset: vary-

ing sparsities ν = 0.35, 0.5 and N = 16, 22, 28, 34, 40; each network is sampled

10 times. Shapes correspond to the number of eliminated edges in the final pertur-

bation: 1 : #, 2 : □, 3 : D, 4 : △. For each pair (ν,N), the un-preconditioned and
Cholesky-preconditioned execution times are shown.

We sample networks with a varying number of verticesN = 10, 16, 22, 28

and varying sparsity pattern ν = 0.35, 0.5 which determine the number

of edges in the output as m = ν
N(N−1)
2 . Due to the highly randomized

procedure, topological structures of a sampled graph with a fixed pair of

parameters may differ substantially, so 10 networks with the same (N, ν)

pair are generated. For each network, the working time (without considering

the sampling itself) and the resulting perturbation norm ε are reported in

Figure VI.4a and Figure VI.4b, respectively. As anticipated in Section V.I,

we show the performance of two implementations of the method, one based

on LSMR and one based on LSMR preconditioned by using the incomplete

Cholesky factorization of the initial matrices. We observe that,

♦ the computational cost of the whole procedure lies between O(m2)
and O(m3)

♦ denser structures, with a higher number of vertices, result in a higher
number of edges being eliminated; at the same time, even most dense

cases still can exhibit structures requiring the elimination of a single

edge, showing that the flow does not necessarily favor multi-edge op-

tima;

♦ the required perturbation norm ε is growing with the size of the graph,
Figure VI.4b, but not too fast: it is expected that denser networks

would require larger ε to create a new hole; at the same time if the

66

perturbation were to grow drastically with the sparsity ν, it would imply

that the method tries to eliminate sufficiently more edges, a behavior

that resembles convergence to a sub-optimal perturbation;

♦ preconditioning with a constant incomplete Cholesky multiplier, com-
puted for the initial Laplacians, provides a visible execution time gain

for medium and large networks. Since the quality of the precondition-

ing deteriorates as the flow approaches the minimizer (as a non-zero

eigenvalue becomes 0), it is worth investigating the design of a precon-

ditioner for the up-Laplacian that can be efficiently updated.

VI.III Transportation Networks

Finally, we provide an application to real-world examples based on city trans-

portation networks. We consider networks for Bologna, Anaheim, Berlin

Mitte, and Berlin Tiergarten; each network consists of nodes — intersec-

tions/public transport stops — connected by edges (roads) and subdivided

into zones; for each road, the free flow time, length, speed limit are known;

moreover, the travel demand for each pair of nodes is provided through the

dataset of recorded trips. All the datasets used here are publicly available at

https://github.com/bstabler/TransportationNetworks; Bologna net-

work is provided by the Physic Department of the University of Bologna (en-

riched through the Google Maps API https://developers.google.com/

maps).

The regularity of city maps naturally lacks 3-cliques, hence forming the

simplicial complex based on triangulations as done before frequently leads to

trivial outcomes. Instead, here we “lift” the network to city zones, thus more

effectively grouping the nodes in the graph. Specifically:

1. we consider the completely connected graph where the nodes are zones

in the city/region;

2. the free flow time between two zones is temporarily assigned as a weight

of each edge: the time is as the shortest path between the zones (by

the classic Dijkstra algorithm) on the initial graph;

3. similarly to what is done in the filtration used for persistent homology,

we filter out excessively distant nodes; additionally, we exclude the

longest edges in each triangle in case it is equal to the sum of two

other edges (so the triangle is degenerate and the trip by the longest

edge is always performed through to others);

4. finally, we use the travel demand as an actual weight of the edges in

the final network; travel demands are scaled logarithmically via the

67

https://github.com/bstabler/TransportationNetworks
https://developers.google.com/maps
https://developers.google.com/maps

1

2

3

4

5

6

7

89

10

11

12
13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38
39

40

41

42

43

44

45

46

47

48

49

50

51

5253

54

55

56

57

58

59

60

Bologna: Regional Network

1

2
3

4

5

6

7

89

10

11

1213

14
15

16

17

18

19

20

21

22

23

24

25

26
27

28

29

30

31

32

33

34

35

36

37

38 39

40

41

42
43

44

4546
47

48

49

50

51

5253

54

55
56

57
58

59

60

−‖v‖−‖v‖−‖v‖−‖v‖−‖v‖−‖v‖−‖v‖−‖v‖−‖v‖−‖v‖−‖v‖−‖v‖−‖v‖−‖v‖−‖v‖−‖v‖ ‖v‖‖v‖‖v‖‖v‖‖v‖‖v‖‖v‖‖v‖‖v‖‖v‖‖v‖‖v‖‖v‖‖v‖‖v‖‖v‖

1st original eigenflow

1

2
3

4

5

6

7

89

10

11

1213

14
15

16

17

18

19

20

21

22

23

24

25

26
27

28

29

30

31

32

33

34

35

36

37

38 39

40

41

42
43

44

4546
47

48

49

50

51

5253

54

55
56

57
58

59

60

−‖v‖−‖v‖−‖v‖−‖v‖−‖v‖−‖v‖−‖v‖−‖v‖−‖v‖−‖v‖−‖v‖−‖v‖−‖v‖−‖v‖−‖v‖−‖v‖ ‖v‖‖v‖‖v‖‖v‖‖v‖‖v‖‖v‖‖v‖‖v‖‖v‖‖v‖‖v‖‖v‖‖v‖‖v‖‖v‖

2nd original eigenflow

1

2
3

4

5

6

7

89

10

11

1213

14
15

16

17

18

19

20

21

22

23

24

25

26
27

28

29

30

31

32

33

34

35

36

37

38 39

40

41

42
43

44

4546
47

48

49

50

51

5253

54

55
56

57
58

59

60

−‖v‖−‖v‖−‖v‖−‖v‖−‖v‖−‖v‖−‖v‖−‖v‖−‖v‖−‖v‖−‖v‖−‖v‖−‖v‖−‖v‖−‖v‖−‖v‖ ‖v‖‖v‖‖v‖‖v‖‖v‖‖v‖‖v‖‖v‖‖v‖‖v‖‖v‖‖v‖‖v‖‖v‖‖v‖‖v‖

created eigenflow

Figure VI.5: Example of the Transportation Network for Bologna. Left pane:

original zone graph where the width of edges corresponds to the weight; to-be-

eliminated edge is colored in red. Right pane: eigenflows, original and created; color

and width correspond to the magnitude of entries.

transformation wi 7→ log10
(

wi
0.95minwi

)
; see the example on the left

panel of Figure VI.5.

Given the definition of weights in the network, high instability (correspond-

ing to small perturbation norm ε) implies structural phenomena around the

“almost-hole”, where the faster and shorter route is sufficiently less de-

manded.

In the case of Bologna, Figure VI.5, the algorithm eliminates the edge

[11, 47] (Casalecchio di Reno – Pianoro), creating a new hole 6 − 11 −
57 − 47. We also provide examples of the eigenflows in the kernel of the
Hodge Laplacian (original and additional perturbed): original eigenvectors

correspond to the circulations around holes 7− 26− 12− 20 and 8− 21−
20− 16− 37 non-locally spread in the neighborhood, [SBH+20].
The results for four different networks are summarized in Table 2; p mim-

ics the percentile, ε/
∑
e∈V1 wi(e), showing the overall small perturbation

norm contextually. At the same time, we emphasize that except for Bologna

(which is influenced by the geographical topology of the land), the algorithm

does not choose the smallest weight possible; indeed, given our interpretation

of the topological instability, the complex for Berlin-Tiergarten is stable, and

the transportation network is effectively constructed.

68

m0 m1 m2 time ε p

2.43s 0.65 0.003

5.39s 0.57 0.003

2.46s 1.18 0.015

127s 0.887 0.0016

Cities
network

β1
logarithmic weights

Bologna 60 175 171 2
[11, 47] (4th smallest)

Anaheim 38 159 221 1
[10, 29] (11th smallest)

Berlin-Tiergarten 26 63 55 0
[6, 16] (20th smallest)

Berlin-Mitte 98 456 900 1
[57, 87] (6th), [58, 87], (17th)

Table 2: Topological instability of the transportation networks: filtered zone net-

works with the corresponding perturbation norm ε and its percentile among w1(·)
profile. For each simplicial complex, the number of nodes, edges, and triangles in

V2(K) are provided alongside the initial number of holes β1. The results of the
algorithm consist of the perturbation norm, ε, computation time, and approximate

percentile p.

69

IV Preconditioning for efficient solver of Laplacian LS

Linear systems are ubiquitous in science and engineering, and the study

and the design of efficient solvers is of utmost importance as a consequence.

In the case of higher-order Laplacians Lk , the system

Lkx = f (Eqn. 74)

appears in various problems (generally, in the least square sense). Examples

include:

♦ in the computation of the lower part of the spectrum of Lk (e.g. for the
first non-zero eigenvalue λ+ from the target functional in Chapter III

or in the evolution of spectrum in the persistent homology, [GS23a])

where one typically needs an iterative solution Lkxl = xl−1;

♦ for dynamical systems governed by the Laplacian operator Lk (e.g.
random walks):

ẋ = Lkx− f (Eqn. 75)

inside implicit numerical integrators or when studying the stationary

point, both based on Equation (74);

♦ in the case of implicit graph neural networks, [GCZ+20], on simplices
where the implicit equation determines the output feature vector of the

layer

x = φ (WxLk + B) (Eqn. 76)

♦ finally, given the Hodge Decomposition in Theorem II.III.2, one is fre-
quently interested in the projection of a flow x onto harmonic, curl or

gradient subspaces which requires efficient solvers for L↓kx = f and

L↑kx = f in the least square sense, [SBH
+20].

The efficiency of the pre-existing solvers for Equation (74) is frequently

determined by what we call computational stability of the matrix Lk (i.e.

sensitivity of solutions of the linear system to small perturbations of the right-

hand side f), especially for a vast array of iterative solvers. In that scope,

we associate computational or numerical stability with a condition number

of the matrix, κ(Lk), so unstable systems are typically poorly conditioned.

Moreover, as we will demonstrate later, the convergence of iterative methods

is frequently governed by the condition number of the matrix.

70

As a result, in this chapter, we aim to develop an efficient solver for

the system in Equation (74) (in the least square sense) by reducing it to

a smaller sparser system and providing a preconditioning scheme for such a

system. Whilst in the case of the topological stability above, we explored a

graph theoretical notion of instability (how many edges one needs to eliminate

to create another hole in the homology group Hk) through a computational
lens, here we attempt to mitigate a form of numerical instability by exploiting

the underlying topology of the simplicial complex.

I. Reduction to a least-square problem for up-Laplacian

We have outlined above the motivation for the efficient solver for linear sys-

tem Lkx = f in the least square sense for determining topological feature

through the spectrum σ(Lk) or describing system’s dynamics and stationary

points. At the same time, higher-order Laplacians Lk exhibit two funda-

mental properties further implying the existence of efficient solvers: (1) they

are naturally sparse and (2) kerLk induces the Hodge Decomposition of the

space, Theorem II.III.2, which can be leveraged to obtain a simpler solver.

Indeed, note that k-th order Laplacians Lk , k > 0, are matrices with

a large number of zero entries since mk ≪ m2k−1 asymptotically (e.g. the
number of triangles m2 is always bounded by m

3/2
1) and, thus, are never

dense. Consequently, Lk is necessarily a sparse matrix and, therefore, its

corresponding matvec operation is cheap; as a result, any solver that is

limited to exclusively calling matvecs with Lk would be relatively inexpensive.

Due to this intrinsic form of sparsity for the matrix Lk , in the following,

we shall use the term sparse to indicate a structural property of the simplex

K rather than its Laplacian matrices. In particular, in analogy with the
classical graph case, we say that the simplicial complex K is k-sparse if
mk = O(mk−1 logmk−1), that is the number of simplices of higher order
is comparable up to a constant times the number of simplices of lower order

times its logarithm. This is, for example, the case for structured simplicies

such as trees for k = 0 or triangulations for k = 1. Moreover, one can

show that for each dense simplicial complex K and for any given order k ,
there is a k-sparse K′ such that the corresponding up-Laplacians L↑k(K)
and L↑k(K

′) are spectrally close, [OPW22], which we comment on later in

Theorem IV.III.9.

Finally, we note that the existence of the Hodge Decomposition and

Principle Spectral Inheritance, Theorem III.III.5, allows us to reduce solv-

ing Lkx = f to the solution of L
↑
kx = f via the following direct result:

71

Th IV.I.7 (Joint k-Laplacian solver) The least-square problem Lkx = f can be

reduced to a sequence of consecutive least-square problems for isolated

up-Laplacians. Precisely, x is a solution of IV.I.7,

Lkx = f s. t. x, f ⊥ kerLk

if and only if it can be written as x = B⊤k u+ x2, where:

û = argmin
z

∥∥∥L↑k−1z− Bk f1∥∥∥ , u = argmin
z

∥∥∥L↑k−1z− û∥∥∥ ,
x2 = argmin

y

∥∥∥L↑ky − f2∥∥∥
and f = f1 + f2 with f1 = B

⊤
k z1, z1 = argmin

z

∥∥∥L↑k−1z− Bk f∥∥∥.
Proof Given Hodge decomposition, Theorem II.III.2, the solution x can be de-

composed into the gradient and curl parts, x = x1+ x2 = B
⊤
k u+Bk+1v

for some u, v (since x ⊥ kerLk). Then, the system L↑kx = f is equivalent
to:

L↓kB
⊤
k u = B

⊤
k BkB

⊤
k u = f1

L↑kBk+1v = Bk+1B
⊤
k+1Bk+1v = f2

f1 + f2 = f

where f1 and f2 is the similar Hodge decomposition of the right hand

side f, with f1 ∈ imB⊤k , f2 ∈ imBk+1 and f ⊥ kerLk . Then f =
B⊤k z1 + Bk+1z2 and, after multiplication by Bk , BkB

⊤
k z1 = L

↑
k−1z1 =

Bk f ⇐⇒ minz1

∥∥∥L↑k−1z1 − Bk f∥∥∥ and f2 = f − B⊤k z1.
Finally, we note that equation B⊤k BkB

⊤
k u = f1 ⇐⇒ (L↑k−1)

2u = Bk f1
can be solved by two consecutive least-square problems:minû

∥∥∥L↑k−1û− Bk f1∥∥∥
minu

∥∥∥L↑k−1u− û∥∥∥
which corresponds to the solution of the down part of the original system.

■

Rem I.18 Note that Theorem IV.I.7 can be immediately generalized to the case

of weighted operators Bk and Lk without any alterations. Moreover, in

order to solve L↑kx = f we assume Wk−1 = I from now and on; indeed,

since Wk−1 is diagonal and non-singular, the transition between L
↑
kx =

W−1k−1BkW
2
kB
⊤
k W

−1
k−1x = f and BkW

2
kB
⊤
k x̂ = f̂ is immediate and cheap.

Finally, to simplify the notation, we further refer to the weighted operator

Bk = BkWk as Bk unless the unweighted case is specifically stated.

72

To summarize:

♦ Lk is a necessarily sparse matrix with cheap matvec operations (and
maybe even cheaper in the case of sparse simplicial complexes) and

benefits from a solver limited to such operations;

♦ due to Hodge’s theory and Theorem IV.I.7, it is sufficient to develop
efficient solvers only for the least-square problem for the up-Laplacian,

argmin

x⊥kerL↑
k

∥∥∥L↑kx− f∥∥∥, instead of the whole operator Lk .
In the next section, we recall the main ideas of standard iterative methods

for linear systems and least-square problems that rely exclusively on matvec

operations and show the connection between the convergence rate of such

methods and the condition number of L↑k .We, then, will introduce a precondi-

tioning strategy for L↑k named heavy collapsible subcomplex precondition-

ing (HeCS-preconditioning), which aims at reducing the condition number

κ(L↑k) by leveraging topological properties of K.

II. Iterative Methods and Preconditioning: an overview

Before addressing the question of the higher-order up-Laplacian L↑k , let us

briefly recite the main ideas of iterative methods for linear systems and least-

square problems and their connection to the matrix’s condition number.

II.I Iterative methods

An iterative method for solving a linear system Ax = b consists of computing

a sequence {x0, x1, x2, . . . } converging to the exact solution, limk→∞ xk =
x∗ = A−1b. Typically, the following classes of iterative methods are distin-

guished:

1. stationary iterative methods: for the system Ax = b, one searches

for the solution as a stationary point of a suitable fixed point problem

x = Bx+ c. The sequence {xk} generated by the method converges
to the unique fixed point x∗, coinciding with a correct solution of the

linear system.

For instance, setting A = M − N with M is invertible, we get:

Ax = b ⇔ (M − N) x = b ⇔ Mx = Nx+ b

⇔ x =
(
M−1N

)︸ ︷︷ ︸
B

x+M−1b︸ ︷︷ ︸
c

(Eqn. 77)

Specific choices and forms of matrices M and N define Jacobi, Gauss-

Seidel, and relaxation methods, [Saa03]. Moreover, one immediately

sees that the spectral radius ρ(M−1N) characterizes the convergence

73

of the sequence xk+1 = M
−1Nxk + M

−1b. Additionally, if A is

Hermitian, one can guarantee ρ(M−1N) < 1 for the specific choice of

M providing a convergent fixed point method;

2. Krylov subspace methods: for each vector v one defines a Krylov

subspace Kl(A, v) = span
{
v, Av, A2v, . . . Al−1v

}
and each next

approximation step xl is searched for in the affine space x0+Kl(A,b−
Ax0). Naturally, one searches for the best possible approximation in

such space minimizing the L2-residual, minv∈x0+Kl ∥Av − b∥
2
2. In a

similar fashion, one can move from solving the linear system to the op-

timization of the function φ(x) with the global optimum x∗ = A−1b

using Krylov subspace methods and other iterative optimization rou-

tines to obtain the solution; we provide an example of such a function

below.

For the sake of completeness, in the following subsection, we demonstrate

the connection between the Krylov subspace optimization method known as

conjugate gradient method and the operator’s condition number κ(A).

II.II Conjugate gradient method and its convergence

Note that all discussed higher-order Laplacian operators Lk , including up- and

down-terms L↑k and L
↓
k , are symmetric semi-positive definite. Let us define

the conjugate gradient (CG) method for a strictly positive definite operator

A. This is a particular Krylov-based method motivated by the optimization of

the objective function φ(x) = x⊤Ax− x⊤b. An extension of the method is
known as conjugate gradient method for least-square problems (CGLS)

and exhibits virtually the same convergence estimate.

The idea of the CG method is to perform iterative updates of xk in the

direction dk such that directions {dk} are A-orthogonal (or A-conjugate).
In other words, one aims to move xk orthogonally to the direction of the

previous step to avoid inefficient “zigzagging” of the classical gradient de-

scent method, [HS+52]. Below, we formulate this idea in terms of Krylov

subspaces and discuss its convergence rate.

Def. 10 (Krylov subspace) Let x0 be the initial guess with the initial residual

r0 = b0 − Ax0 and initial error e0 = x∗ − x0. Consider the l-th Krylov
subspace:

Kl = Kl(A, r0) = span
{
r0, Ar0, . . . A

l−1r0
}
. (Eqn. 78)

Let Pm be a space of m-degree polynomials, we have

Kl = span {r0, Ar0, . . . Arl−1} = {p(A)r0 | p ∈ Pl−1} . (Eqn. 79)

74

In other words, the Krylov subspace Kl is the space of actions of all poly-
nomials of the matrix A of degree ≤ l − 1 on the initial residual vector
r0.

Note that, by definition, the initial error e0 and the initial residual r0 are

connected through the equation:

Ae0 = A (x∗ − x0) = b− Ax0 = r0 (Eqn. 80)

Let us assume that one has the initial guess, residual, and error x0, r0, e0
respectively; now let us formulate the problem of finding the best approxi-

mation xl in the shifted Krylov subspace as we stated earlier:

Problem Find el ∈ Kl such that it is the best approximation of e0 in Kl in terms of
the operator norm ∥v∥A =

√
⟨v, v⟩A =

√
⟨v, Av⟩ :

find el ∈ Kl : ∥el − e0∥A ≤ ∥e0 − e∥A for ∀e ∈ Kl (Eqn. 81)

Note that this problem coincides with:

find xl ∈ x0 +Kl : ∥xl − x∗∥A ≤ ∥x∗ − x∥A for ∀x ∈ x0 +Kl(Eqn. 82)

Expectably, the concept of the closest approximation in the sense of the

A-norm involves the idea of A-orthogonality, as we review next.

Note that the residuals also span each Krylov subspace:

Kl+1(A, r0) = span
{
r0, Ar0 . . . A

l r0

}
= span {r0, r1 . . . rl}(Eqn. 83)

Indeed, by definition Krylov subspaces are nested, Kl(A, r0) ⊆ Kl+1(A, r0),
and, if xl − x0 ∈ Kl(A, r0), then

rl = b− Axl = b− Ax0︸ ︷︷ ︸
=r0∈K0⊆Kl+1

−A(xl − x0︸ ︷︷ ︸
∈Kl

)

︸ ︷︷ ︸
∈Kl+1

∈ Kl+1 (Eqn. 84)

so rl ∈ Kl+1. At the same time, rl ⊥ Kl(A, r0): indeed, for the best
approximation xl ∈ x0 + Kl(A, r0), the A-distance between x∗ and xl is
minimal. As a result, if one adds an arbitrary vector αv with v ∈ Kl , then
the norm ∥x∗ − xl + αv∥2A = ∥x

∗ − xl∥2A + 2α ⟨x
∗ − xl , v⟩A + α2∥v∥2A

has the minimum at α = 0, so 0 = ⟨x∗ − xl , v⟩A = ⟨A(x∗ − xl), v⟩ =
⟨b− Axl , v⟩ = ⟨rl , v⟩ for any v ∈ Kl(A, r0). So, each residue vector rl lies
in the next Krylov subspace Kl+1 and is orthogonal to the previous subspace
Kl , thus forming a basis.

75

Instead of rl , one can define an orthogonal (with respect to A) basis of

Kl+1(A, r0) = span {d0,d1 . . .dl} which can be done iteratively via Gram-
Schmidt orthogonalization:

dl = rl −
l−1∑
i=0

βidi , where βi =
⟨rl ,di⟩A
∥di∥2A

(Eqn. 85)

Note that rl ⊥ Kl , so ⟨rl ,di⟩A = ⟨rl , Adi︸︷︷︸
∈Ki+2

⟩ = 0 if i ≤ l − 2, so

dl = rl − βl−1dl−1, βl−1 =
⟨rl ,dl−1⟩A
∥dl−1∥2A

(Eqn. 86)

Since xl − xl−1 ∈ Kl(A, r0) and xl − xl−1 = (xl − x∗) + (x∗ − xl−1) ⊥
Kl−1(A, r0) by the similar arguments, the difference between approximation

is colinear to the direction vector dl−1, xl − xl−1 = αldl−1. To obtain the
coefficient αl , it is sufficient to note that:

αlAdl−1 = A (xl − xl−1) = (Axl − b)− (Axl−1 − b) = rl−1 − rl(Eqn. 87)

so

αl ⟨Adl−1, rl−1⟩ = ⟨rl−1 − rl , rl−1⟩ = ∥rl−1∥2 (Eqn. 88)

As a result, we obtain the following iterative scheme which defines the

CG method (more details in Algorithm 3):

dl = rl − βl−1dl−1 with βl−1 =
⟨rl ,dl−1⟩A
∥dl−1∥2A

rl = rl−1 − αlAdl−1 with αl =
∥rl−1∥2

⟨dl−1, rl−1⟩A
xl = xl−1 + αldl−1

(Eqn. 89)

II.III Condition number and convergence rate of CG

Let us briefly discuss the condition number κ(A) = ∥A∥2 · ∥A−1∥2 which,
for a positive definite matrix A, can be written as κ = λn⧸λ1 where λ1 and
λn are the smallest and largest eigenvalue of A, respectively. Typically, the

condition number is used to characterize the stability of the matrix in terms

of the solution of the corresponding linear system. Specifically, assume one

has the perturbed linear system:

A (x+ δx) = b+ δb (Eqn. 90)

76

Algorithm 3 Conjugate Gradient Method [HS+52, BES98]

Require: positive definite A, RHS b, initial guess x0
1: r0 ← bAx0 ▷ compute initial residual
2: d0 ← r0 ▷ compute initial direction
3: for l = 1, . . . and until stoppingCriterion do

4: αl ←
∥rl−1∥

2

∥dl−1∥
2
A

5: rl ← rl−1 − αlAdl−1
6: xl ← xl−1 + αldl−1
7: βl−1 ← −

∥rl∥
2

∥rl−1∥2

8: dl ← rl − βl−1dl−1
9: end for

where δx is the error of the solution given by the perturbation of the input b.

One aims to characterize the relative error ∥δx∥\∥x∥ in terms of A and b.
Note that Ax = b and Aδx = δb, then by the definition of the operator’s

norm:

∥A∥2∥x∥ ≥ ∥b∥
∥A−1∥2∥δx∥ ≤ ∥δb∥

=⇒
∥δx∥
∥x∥ ≤ κ(A)

∥δb∥
∥b∥ (Eqn. 91)

So the condition number κ(A) characterizes the size of the error with re-

spect to the size of the perturbation on the data, or, in other words, how the

solution of the linear system with matrix A blows up the perturbation δb.

Similarly, the condition number κ(A) governs the quality of the approxima-

tion xl in the CG method, as we demonstrate below.

Let us reiterate that by definition, a vector from the Krylov subspace

Kl(A, r0) is the action of the polynomial of matrix A on the initial residue
vector r0. As a result:

∥x∗ − xl∥A = min
x∈x0+Kl

∥x∗ − x∥A = min
x∈x0+Kl

∥x∗ − x0 − (x− x0︸ ︷︷ ︸
z∈Kl

)∥A = min
z∈Kl
∥e0 − z∥A =

= min
p∈Pl−1

∥e0 − p(A) r0︸︷︷︸
=Ae0

∥A = min
p∈Pl :p(0)=0

∥e0 − p(A)e0∥A = min
p∈Pl :p(0)=1

∥p(A)e0∥A

(Eqn. 92)

The remaining term ∥p(A)e0∥A can be computed explicitly:

p(A)e0 =
∑
pjA
je0 =

∑
j

pjA
j
∑
i

xiξi =
∑
i ,j

pjxiλ
j
iξi =

∑
i

xip(λi)ξi

∥p(A)e0∥2A = ⟨p(A)e0, Ap(A)e0⟩ =
∑
i j

xixjp(λi)p(λj)λj⟨ξi , ξj⟩ =
∑
i

|xi |2λi |p(λi)|2

(Eqn. 93)

77

Then

∥x∗ − xl∥2A = min
p∈Pl :p(0)=1

∥p(A)e0∥A =
∑
i

|xi |2λi |p(λi)|2 ≤ max
λ∈σ(A)

p2(λ)
∑
i

λi |xi |2 =

= max
λ∈σ(A)

p2(λ)∥e0∥2A
(Eqn. 94)

As a result we have

∥x∗ − xl∥A ≤ min
p∈Pl :p(0)=1

max
λ∈σ(A)

|p(λ)|∥e0∥A (Eqn. 95)

Note that the estimation above bounds the approximation error ∥x∗ − x∥A
from above by the minimum over the set of polynomials. Then, such estima-

tion holds for every polynomial p(x) of degree l and p(0) = 1. In order to

obtain the final bound on the approximation error, one chooses the following

family of polynomials.

Let Tl(x) be a Chebyshev polynomial of the first kind defined on x ∈
[−1, 1], such that

T0(x) = 1, , T1(x) = x, Tl = 2xTl−1(x)− Tl(x), or

Tl(x) =
1

2

[(
x +

√
x2 − 1

)l
+
(
x −

√
x2 − 1

)l] (Eqn. 96)

It is well known that Chebyshev polynomials Tl(x) has the minimal L∞ norm

(minimal largest absolute value, maxx∈[−1,1] |p(x)|) over [−1, 1] among
monic polynomials of the same order. Then, in order to construct p(x),

we rescale the corresponding Chebyshev polynomial to take values from x ∈
[λ1, λn]:

p(x) =
1

Tl

(
λ1+λn
λn−λ1

)Tl (λ1 + λnλn − λ1
−

2

λn − λ1
x

)
(Eqn. 97)

It is easy to see that p(0) = Tl

(
λ1+λn
λn−λ1

)/
Tl

(
λ1+λn
λn−λ1

)
= 1, moreover,

∥Tl(x)∥∞ = 1 and, due to the optimality of the L∞ norm for Chebyshev
polynomials, the estimation 95 is tight for the chosen p(x). As a result,

max
λ∈σ(A)

|p(λ)| ≤ max
x∈[λ1,λn]

|p(x)| =
1

Tl

(
λ1+λn
λn−λ1

) (Eqn. 98)

As a result

Th IV.II.8 (Convergence rate of Conjugate Gradient method) Let A be a sym-

metric positive definite matrix, A ∈ Rn×n. Then, the convergence of the

78

CG method follows the estimate:

∥xl − x∗∥A ≤ 2

(√
κ(A)− 1√
κ(A) + 1

)l
∥e0∥A (Eqn. 99)

where e0 is the initial error.

Proof As we already showed,

∥x∗ − xl∥A ≤ min
p∈Pl :p(0)=1

max
λ∈σ(A)

|p(λ)|∥e0∥A (Eqn. 100)

and, for the rescaled Chebyshev polynomial,

min
p∈Pl :p(0)=1

max
λ∈σ(A)

|p(λ)| ≤
1

Tl

(
λ1+λn
λn−λ1

) (Eqn. 101)

Then it is sufficient to estimate Tl

(
λ1+λn
λn−λ1

)
:

2Tl

(
λ1 + λn
λn − λ1

)
=

(
λ1 + λn
λn − λ1

+

√
(λ1 + λn)2

(λn − λ1)2
− 1

)l
+

(
λ1 + λn
λn − λ1

−

√
(λ1 + λn)2

(λn − λ1)2
− 1

)l
=

=

(
λ1 + λn
λn − λ1

+
2
√
λ1λn

λn − λ1

)l
+

(
λ1 + λn
λn − λ1

−
2
√
λ1λn

λn − λ1

)l
=

=

(√
λn +

√
λ1√

λn −
√
λ1

)l
+

(√
λn −

√
λ1√

λn +
√
λ1

)l
≥

(√
κ(A) + 1√
κ(A)− 1

)l
(Eqn. 102)

■

By Theorem IV.II.8, poorly conditioned (large κ(A)) operators A have

a convergence exponent

√
κ(A)−1√
κ(A)+1

≈ 1 and, thus, CG converges slowly; on
the contrary, the closer κ(A) is to 1, the smaller is the exponent and the

convergency is faster. Moreover, similar convergence bounds hold for all

Krylov-type methods. As a result, one aims to transform the operator A in

such a way that κ(A) is as close to 1 as possible by means of a so-called

preconditioner.

II.IV Zoo of preconditioners

Owing to what is discussed above, given a Krylov-type iterative method for

the solution of the system Ax = b, one aims to improve the condition number

of the matrix A. The common idea here is to move to a new operator via

simple matrix multiplication:

Ax = b ←→ (MA)x = Mb (Eqn. 103)

79

whereMA is the new operator for the iterative method. If A was poorly con-

ditioned, then one aims for κ(MA) ≈ 1, soM should be a easily computable
approximation of A−1. Then, the new system with MA operator is called a

preconditioned system where M is referred to as a (left) preconditioner of

the operator A.

Example Assuming the operator A has no zero entries on the main diagonal, let D

be a diagonal matrix with the same main diagonal as A, so Ai i = Di i .

Then, one can use M = D−1, which is clearly always cheap to compute,

as a left preconditioner for matrix A. Such a preconditioner is known to

be effective for unnormalized or diagonally dominant matrices.

Rem II.19 Note that in practical implementations, the actual computation of M or

the whole new operator MA is not necessary. Instead, one needs efficient

matvec operations (MA)xk = M(Axk), and, as a result, one searches for

the preconditioner M with a fast matvec operation, simultaneously with

M ≈ A−1 (note that matvecs of the inverse of the original operator A−1
is typically expensive).

In other cases, one can search for left and right preconditioning,

Ax = b ←→ (M−1AN−1)(Nx) = M−1b , (Eqn. 104)

where A ≈ MN, or its symmetric version for symmetric positive definite A,

Ax = b ←→ (C−1AC−⊤)(C⊤x) = C−1b , (Eqn. 105)

where A ≈ CC⊤. In both cases, one naturally needs to be able to perform
matvec operations with the inverse operators M−1, N−1 and C−1. One of

the most standard cases for the symmetric preconditioner C is searched for

amongst lower-triangular matrices such that matvec operations with C−1

can be done efficiently through the forward substitution. The decomposi-

tion A = CC⊤, where C is lower-triangular and A is a positive definite,

is known as Cholesky decomposition and C is known as Cholesky multi-

plier, [Hig90]. Direct calculations of the Cholesky multiplier typically require

a full pass of Gauss elimination; moreover, sparse operators A tend to have

dense Cholesky multiplier C, so matvec of the initial operator A may be ulti-

mately cheaper than matvec with C−1, despite the triangular structure. As

much more efficient alternative, one can try to maintain the sparsity pattern

or obtain some form of approximation of the Cholesky multiplier, known as

incomplete Cholesky preconditioner, [Man80, GVL13]; similarly, one can

obtain incomplete LU-decomposition as the left and right preconditioners for

non-symmetric systems, [HW92].

Other examples of popular and efficient preconditioning schemes include

80

Algebraic Multigrid preconditioners (AGM), combinatorial preconditioners,

and polynomial preconditioners. In these cases, the application and efficiency

are primarily dependent on the nature of operator A, [Stü01, Y+02, NN16,

LB12, Saa85, SS08].

Often, preconditioners used in the literature do not provide theoretical

guarantees on the preconditioning quality and typically are efficient in specific

settings. Moreover, higher-order Laplacian operators Lk and, even more

so, up- and down- terms L↑k and L
↓
k are singular and only symmetric semi-

positive definite, which renders the majority of the existing preconditioners

either expensive to compute, inefficient or inapplicable. In the rest of the

chapter, we develop a new Cholesky-like preconditioning scheme based on the

underlying simplicial complex that avoids all the abovementioned problems.

III. Preconditioning of the up-Laplacian

In the previous sections, we have reduced the task of solving the LS-problem

for Lk to the corresponding sparse LS-problem for L
↑
k in the formminx ∥L

↑
kx−

f∥22. To leverage the sparsity of L
↑
k , one aims to apply one of the iterative

solvers (like CGLS, [BES98, HS+52]) whose convergence is highly depen-

dent on the condition number. To be more precise, one needs to generalize

the condition number κ(·) for the case of singular matrices since any up-
Laplacian L↑k is necessarily singular. This is done by considering the “least-

square” or “positive’ condition number:

κ+(L
↑
k) =

σ+max(L
↑
k)

σ+min(L
↑
k)
, (Eqn. 106)

where σ+max(L
↑
k) and σ

+
min(L

↑
k) are the maximal and minimal positive singular

values of L↑k , respectively. It is immediate to note that such definition is

coherent with the introduction of x ⊥ kerL↑k in the definition of the operator

norm, i.e. ∥
(
L↑k

)−1
∥2 = sup

x⊥kerL↑
k

∥x∥2
∥L↑
k
x∥2
, similar to the least-square

problem for L↑k .

In order to reduce κ+(L
↑
k), we move from minx ∥L

↑
kx− f∥ to the sym-

metrically preconditioned system

min
x
∥
(
C†L↑kC

⊤†
)(
C⊤x

)
− C†f∥ (Eqn. 107)

where C† denotes the Moore-Penrose pseudoinverse of C, and C is chosen

so that (a) the transition between unconditioned and preconditioned systems

are bijective, (b) the matrix C†L↑kC
⊤† is better conditioned than the initial

L↑k , and (c) the pseudo-inverse of the preconditioner C can be efficiently im-

81

plemented. In particular, a cheap matvec of the pseudo-inverse C†f is guar-

anteed in the case of C being a lower-triangular matrix (e.g. for the Cholesky

and the incomplete Cholesky preconditioners [Hig90, Man80, GVL13]).

When C in Equation (107) is lower-triangular, we say that we are looking for

a Cholesky-like preconditioner.

Proposed approach To obtain such preconditioner C for L↑k , we aim to

leverage the underlying structure of the simplicial complex K. Our approach
will follow similar graph-based preconditioning ideas from the literature as a

starting point. Precisely,

♦ in the case of standard graphs, it is known that computing graph-
induced preconditioners for the classical graph Laplacian L0, [KS16,

Tro19, LB12], is far more efficient when the graph is sparse. Moreover,

the preconditioning of a dense graph is typically done by constructing

a sparser approximating graph first and then by computing a precondi-

tioner for the sparse approximant. For these reasons, here we assume

the given simplicial complex K to be sparse. If this is not the case, then
one can use sparsification ideas that we describe below to compute an

initial sparse approximant;

♦ graph-based Cholesky or approximate Cholesky preconditioners for the
case of classical graphs, k = 0, rely on the particular structures of the

exact Cholesky multipliers of the graph Laplacian. We briefly describe

the procedure for k = 0 in Subsection III.III to highlight the difference

with the high-order case k > 0;

♦ we observe that computation of the exact Cholesky preconditioner for
up-Laplacians L↑k is cheap and efficient for a specific topological class of

simplicial complexes; as a result, we propose a preconditioning scheme

based on finding a subcomplex of such topological class and exploiting

its Cholesky multiplier to construct an efficient preconditioner.

III.I Sparsification of simplicial complexes

Frequently, one is interested in finding a sparser approximation M of a given

operator A in order to use M† as a left preconditioner of A; since M is

sparser than A, the matvec operation for M† is cheaper. Note that the

usage of any existing sparsification of A does not guarantee better condi-

tioning of M†A. Moreover, obtaining M may be computationally expensive.

We review here a general result for sparsification from [OPW22], which gen-

eralizes to up-Laplacians of general simplicial complexes the graph Laplacian

sparsification theorem from [SS08], which in practice exhibits both of afore-

mentioned problems. Given an initial simplicial complex K, the goal is to
sample a number of simplices from Vk+1(K) in such a way that the obtained

82

sub-simplicial complex L is arbitrarily close to the original K, in terms of the
spectrum of the up-Laplacians. To state the precise result, we first introduce

the definition of ‘spectral proximity’ for Hermitian matrices:

Def. 11 (Spectral Approximation) The Hermitian matrix A is called spectrally

ε-close to the Hermitian matrix B, A ≈
ε
B, if (1−ε)B ⪯ A ⪯ (1+ε)B,

where ⪰ is the partial ordering induced by the positive definite cone, i.e.
A ⪰ B if A− B is positive semi-definite.

Rem III.20 Note that if A ≈
ε
B, then one can directly bound the distance ∥xA− xB∥,

where AxA = f and BxB = f. Indeed, xB = B
−1AxA and ∥xA − xB∥ =

∥
(
I − B−1A

)
xA∥ ≤ ∥I − B−1A∥∥xA∥ ≤ ∥B−1∥ · ∥B − A∥ · ∥xA∥ ≤

ε∥B−1∥ · ∥B∥ · ∥xA∥ = εκ(B)∥xA∥, with κ(B) being the condition
number of B. Thus, the relative error is controlled by the quality of the

approximation ε and the condition number κ(B). This does not necessarily

mean that one can use an approximation B to obtain a solution of Ax = f

(since obtaining a high-quality approximation for small ε may be expensive),

but implies that assuming one has a preconditioner for one of the matrices,

one can use it to precondition the other.

Th IV.III.9 (Simplicial Sparsification, [OPW22]) Let K be a simplicial complex re-
stricted to its p-skeleton, K =

⋃p
i=0 Vi(K). Let L

↑
k(K) be its k-th up-

Laplacian and let mk = |Vk(K)|. For any ε > 0, a sparse simplicial
complex L can be sampled as follows:

(1) compute the probability measure p on Vk+1(K) proportional to the
generalized resistance vector r = diag

(
B⊤k+1(L

↑
k)
†Bk+1

)
, where

diag(A) denotes the vector of the diagonal entries of A;

(2) sample q simplices τi from Vk+1(K) according to the probability mea-
sure p, where q is chosen so that q(mk) ≥ 9C2mk log(mk/ε), for
some absolute constant C > 0;

(3) form a sparse simplicial complex L with all the sampled simplexes of
order k and all its faces with the weight

wk+1(τi)

q(mk)p(τi)
; weights of repeated

simplices are accumulated.

Then, with probability at least 1/2, the up-Laplacian of the sparsifier L is
ε-close to the original one, i.e. it holds L↑k(L) ≈ε L

↑
k(K).

In other words, the generalized resistance r provides an estimation of the

contribution of each simplex from Vk+1(K) into the spectral profile of L↑k .
It is sufficient to sample q(mk)

(
∼ 1ε

)
simplices from the measure p to

obtain an ε-approximation; note that in term of our definition above, that

83

would make L k-sparse. Additionally, note that the exact computation of the
probability measure p is computationally expensive since it requires (L↑k)

†;

however, several approaches have been proposed to approximate it efficiently,

[SS08]. While the efficiency of such algorithms for the computation of the

measure is yet to be shown in the general case of L↑k , such a study falls

outside the scope of the current work.

Supposing the effective resistance r can be cheaply obtained and assuming

one has a dense simplicial complex K, Theorem IV.III.9 implies that it is
sufficient to obtain a preconditioner C for its sparsifier L which then can be
efficiently used to precondition the original complex K. As a result, the task
of finding an efficient preconditioner for any up-Laplacian in that scenario

would be reduced to the case of k-sparse simplicial complexes. For this

reason, as said before, we focus on the case of k-sparse simplicial complexes

in the rest of the work.

Note that even in the case of a sparse simplicial complex, attempts to

obtain the exact Cholesky multiplier directly may be computationally unfeasi-

ble; this, however, does not hold for the case of the classical graph Laplacian,

k = 0, where one can indeed obtain approximate Cholesky factor correspond-

ing to a sparsifier L (albeit not necessarily coinciding with Theorem IV.III.9
which is fundamentally an existence result), which we discuss next.

III.II Schur complements and Cholesky preconditioner

We start with a useful observation about the structure of the Gaussian elim-

ination process to form the Cholesky factor. Let A ∈ Rn×n be a real sym-
metric positive definite matrix. Then its Schur complements Si obtained in

the process of Cholesky factorization via Gaussian elimination can be defined

recursively as follows: let δi be the i -th canonical vector, (δi)i = 1 and

(δi)j = 0, i ̸= j , then set S0 = A and for i = 1, 2, 3, . . .

Si = Si−1 −
1

αi
Si−1δiδ

⊤
i S
⊤
i−1

ci =
1
√
αi
Si−1δi

αi = δ
⊤
i Si−1δi

(Eqn. 108)

With these definitions, the Cholesky factor C such that A = CC⊤ is formed

by the columns ci , namely

C = [c1 c2 . . . cn].

84

Since ci is the ith column of the i -th step in Gauss elimination, matrix C

defined above is indeed lower triangular. Moreover, note that

1

αi
Si−1δiδ

⊤
i S
⊤
i−1 =

1
√
αi
Si−1δi

(
1
√
αi
Si−1δi

)⊤
= cic

⊤
i (Eqn. 109)

so Si − Si−1 = cic⊤i and Sn = 0. Thus, we have A = S0 = S0 − Sn =∑
(Si −Si−1) =

∑
cic
⊤
i = CC

⊤. So, to obtain the exact Cholesky multi-

plier, one needs to collect the corresponding columns of Schur complements

Si during Gauss elimination; consequently, the algorithmic complexity of ob-

taining C is O
(
n3

6

)
. However, in the case of classical Laplacian L0, the

procedure can be sped up by exploiting the underlying graph structures, as

we demonstrate next.

III.III Cholesky preconditioner for k = 0

In the case of the operator A being the classical graph Laplacian L0 =

L↑0, there is a particularly useful way to interpret the Gaussian elimination

process. Let V0(K) = {[1], [2], . . . , [m0]}; then, structurally, each Schur
complement Sk of the classical Laplacian L0 remains a Laplacian of a smaller

graph without vertices [1], . . . [k] and denser edge structure. Indeed, each

step of Gauss elimination Sk → Sk+1 eliminates the vertex [k] from the
graph and substitutes it with a completely connected clique on the vertices

previously adjacent to [k].

To formally show this, we introduce one of the key underlying structural

features of L0. Let L0 be the Laplacian of the graph G = V0(K),V1(K).
Then, the rank-1 decomposition L0 =

∑
σ∈V1(K) L0(σ) holds, where L0(σ)

is the graph Laplacian corresponding to edge σ and has the form L0(σ) =

w1(σ)eσe
⊤
σ with eσ being incidence column from operator W

−1
0 B1 corre-

sponding to the edge σ ∈ V1(K). Then, the first Schur complement S1 for
L0 is computed as follows: the first column c1 =

1√
α1
L0δ1 in graph terms

is provided by:

c1 =
1
√
α1

∑
σ

w1(σ)eσe
⊤
σ δ1 =

1
√
α1

∑
1∈σ
w1(σ)e (Eqn. 110)

with α1 = δ
⊤
1 L0δ1 = (L0)11 = deg[1] and the entire Schur complement is

given by, [KS16, Tro19]:

S1 =
∑
σ|1/∈σ

w(σ)eσe
⊤
σ︸ ︷︷ ︸

star-like term

+
1

2deg[1]

∑
σ1|1∈σ1
σ2|1∈σ2

w(σ1)w(σ2)
[
eσ1 − eσ2

][
eσ1 − eσ2

]⊤
︸ ︷︷ ︸

clique term

.

(Eqn. 111)

85

Notice that the first star-like term of S1 is the rank-1 decomposition of a

graph Laplacian without edges adjacent to vertex 1. As for the second term,

each vector eσ1 − eσ2 corresponds to an edge. In fact, since σ1 ∩σ2 = [1],
then eσ1−eσ2 corresponds to a column of an incidence matrix describing the
edge between two vertices that are not shared by the edges σ1 and σ2. As

a result, the second term (clique-term) in Equation (111) describes a graph

Laplacian for a completely connected graph on all the vertices adjacent to

vertex [1]. Thus, overall, S1 remains a graph Laplacian. Moreover, as a

result of the first step of Gauss elimination, one substituted a sparse star-

like structure of edges (everything adjacent to the vertex [1]) with a dense,

completely connected subgraph (the clique term). This also supports the

fact that sparse matrices, in general, have a dense Cholesky decomposition.

This observation is at the basis of a successful line of work on sparse

Laplacian approximations, whose key results are summarized in the following:

Th IV.III.10 (Approximate stochastic Cholesky decomposition of L↑0, [Tro19,

KS16]) For a classical graph Laplacian L0 = L
↑
0 of a graph K =

(V0(K),V1(K)) with |V0(K)| = m0 vertices and |V1(K)| = m1 edges,
by Theorem IV.III.9, there exist sparse simplicial complexes {Li}i such
that L↑0(K) ≈ε L

↑
0(Li). In this set, one can construct a specific sparsifier

L ∈ {Li}i such that

(1) the Cholesky decomposition L↑0(L) = CC⊤ is inexpensive and com-
puted alongside with the sparsification;

(2) the Cholesky decomposition is ε-close to the original complex, i.e.

CC⊤ ≈
ε
L↑0(K), with probability at least 1− 2⧸m1;

(3) C is sparse with O(ε−2m1 log2m0) non-zero entries (in comparison
with O(m1) non-zero entries in the original L↑0(K));

(4) the computational complexity of constructing C is

O(ε−2m1 log3m0).

The fundamental idea of Theorem IV.III.10 is that one can avoid the intro-

duction of the clique-term at each step of Gauss elimination, Equation (111).

Instead, one can subsample a sparser subgraph around the eliminated vertex

spectrally close to the original full clique (in expectation), thus building a

sparsifier akin Theorem IV.III.9. One should note that the rigorous proof of

the spectral approximation in the case of Theorem IV.III.10 requires substan-

tial work with matrix concentration inequalities or bag-of-dice martingale and

presents a very intriguing research venue.

Unfortunately, the cornerstone property at the basis of the theorem above,

86

i.e., the fact that all the Si are themselves up-Laplacians of 0-order, does

not carry over in general to the higher-order setting k > 0. In the following

subsection, we show why this is the case for the case k = 1 by analyzing

the structure of the Schur complements arising in the Gaussian elimination

of L↑1.

III.IV The structure of the Schur complements Si for k = 1

It is immediate to show that the following decomposition into rank-1 terms

holds for any up-Laplacian:

Lem III.10 (Rank-1 decomposition of L↑k) For a simplicial complex K, the following
decomposition into structured rank-1 terms holds for any up-Laplacian L↑k :

L↑k =
∑

t∈Vk (K)
L↑k(t) =

∑
t∈Vk (K)

w(t)ete
⊤
t

where, for each t ∈ Vk(K), L↑k(t) = w(t)ete
⊤
t is the rank-1 matrix such

that (a) w(t) = [W 2k]tt is the weight of the simplex t, and (b) et is

the vector obtained as the action of the boundary operator W−1k−1Bk on t,

i.e. the t-th column of the matrix W−1k−1Bk .

Proof Let δi be a versor on the i -th position. Then, et = W
−1
k−1Bkδt and∑

t w(t)ete
T
t = W

−1
k−1Bk

(∑
t w(t)δtδ

⊤
t

)
B⊤k W

−1
k−1; since δtδ

⊤
t =

diag δt and w(t) = w
k
2 (t), the central matrix is exactly

∑
t w(t)δtδ

⊤
t =

W 2k , which gives the original up-Laplacian. ■

Using Lemma III.10, we obtain the following characterization for the first

Schur complement S1 for L
↑
1 similar to the case of the classical Laplacian:

Lem III.11 (First Schur complement S1 for L
↑
1) For the up-Laplacian L

↑
1, the fol-

lowing derivation of the first Schur complement holds:

S1 =
∑
t|1/∈t
w(t)ete

⊤
t +

1

2Ω{1}|∅

∑
t1|1∈t1
t2|1∈t2

w(t1)w(t2)
[
et1−et2

][
et1−et2

]⊤

where Ω{1}|∅ is the total weight of all triangles adjacent to the first edge,

Ω{1}|∅ =
∑
t|1∈t w(t).

Proof Following Equation (108), one needs to compute the constant δ⊤1 S0δ1
and the rank-1 matrix S0δ1δ

⊤
1 S0 where S0 = L

↑
1. Note that e

⊤
t δ1 =

1√
w1(1)

11∈t , the indicator of the triangle t having the edge 1, since 1

is necessarily the first (in the chosen order) edge in the triangle; hence,

87

∑
t w2(t)e

⊤
t δ1 =

1√
w1(1)

∑
t|1∈t w2(t):

δ⊤1 S0δ1 = δ
⊤
1

(∑
t

w2(t)ete
T
t

)
δ1 =

∑
t

w2(t)
(
δ⊤1 et

)2
=

1

w1(1)

∑
t|1∈t
w2(t) =

Ω{1}|∅
w1(1)

S0δ1δ
⊤
1 S0 =

∑
t1,t2

w2(t1)w2(t2)et1e
⊤
t1
δ1δ
⊤
1 et2e

⊤
t2
=

1

w1(1)

∑
t1|1∈t1
t2|1∈t2

w2(t1)w2(t2)et1e
⊤
t2
.

By symmetry,∑
t1|1∈t1
t2|1∈t2

w(t1)w(t2)et1e
⊤
t2
=
1

2

∑
t1|1∈t1
t2|1∈t2

w(t1)w(t2)
(
et1e

⊤
t2
+ et2e

⊤
t1

)
,

one can note by a straightforward arithmetic transformation that

et1e
⊤
t2
+ et2e

⊤
t1
= −

[
et1 − et2]

[
et1 − et2]

⊤ + et1e
⊤
t1
+ et2e

⊤
t2

Finally,
∑
t1|1∈t1
t2|1∈t2

w(t1)w(t2)et1e
⊤
t1
= Ω1

∑
t|1∈t w(t)ete

⊤
t . ■

The structure of the first Schur complement S1 is reminiscent of the

classical graph Laplacian case as S1 is formed of two terms:

H1 =
∑
t|1/∈t
w(t)ete

⊤
t , K1|∅ =

1

2Ω{1}|∅

∑
t1|1∈t1
t2|1∈t2

w(t1)w(t2)
[
et1−et2

][
et1−et2

]⊤
.

(Eqn. 112)

The first term H1 corresponds to the portion of the original L
↑
1 not adjacent

to the edge being eliminated (edge 1), which is kept intact. Instead, the

“star-like” term
∑
t|1∈t w(t)ete

⊤
t , consisting of the sum of up-Laplacians

adjacent to edge 1, is substituted here by the matrix K{1}|∅, which we refer

to as the cyclic term (on the contrary to the clique term in the case of L0)

which reveals the fundamental difference between the classical and higher-

order cases. Unfortunately, unlike the 0-Laplacian case, it is easy to realize

that the cyclic term K{1}|∅ is generally not an up-Laplacian L
↑
1(K̃). We

show this with a simple illustrative example below.

Example Assume the simplicial complex formed by two triangles, V0(K) =
{1, 2, 3, 4}, V1(K) = {12, 13, 14, 23, 24} and V2(K) = {123, 124},
adjacent by the first edge 12 with W2 = I. Then, et1 =(
1 −1 0 1 0

)⊤
, et2 =

(
1 0 −1 0 1

)⊤
and K{1}|∅ =(

0 −1 1 1 −1
)
·
(
0 −1 1 1 −1

)⊤
. Note that K{1}|∅ is denser

88

than L↑1 and has lost the structural balance of L
↑
1: diagK{1}|∅ =

K{1}|∅1 = 0 where diagL
↑
1 = L

↑
11 =

(
Ω{i}|∅

)m2
i=1
.

Indeed, cyclic term K{1}|∅ has a denser structure similar to the clique

term in Equation (111), but each vector et1 − et2 is no longer structurally
equivalent to columns of B2 (at the very least, it has a bigger number of

non-zero elements). This problem stems from a relatively trivial change of

paradigm: in the case of the classical graph, every two vertices can poten-

tially form an edge, but for a simplicial complex, not every pair of edges

may form a triangle. Moreover, further computations of Schur complements

S2, S3, S4 . . . inevitably introduce a fastly growing number of similar cyclic

terms. Thus, to build an efficient preconditioner for L↑1, one needs to deal

with the cyclic terms arising on each step Si .

The obstacle of the cyclic terms K{1}|∅ in Lemma III.11 brings up a

natural question: when does one avoid getting a cyclic term? Note that

edge 1 has at least one adjacent triangle; otherwise, it corresponds to a zero

row and column in L↑k and does not contribute to the up-Laplacia. Then

K{1}|∅ = 0 if and only if edge 1 has a unique adjacent triangle. Moreover,

assuming this holds for edge 1, one may ask the same of edge 2 in the

computation of S2; note that for S2, edge 2 should have a unique adjacent

triangle in the simplicial complex without consideration of edge 1 and

its corresponding triangle; and so on. This concept of iteratively obtaining

edges with a unique adjacent triangle is connected to the topological concept

of collapsibility of a simplicial complex [Whi39a] and, to be precise, a less

demanding version of it which we call weak collapsibility and which we

introduce specifically for this purpose in this work. While not working in the

general case, the Schur decomposition approach works for the special family

of weakly collapsible simplices; we describe the concepts of collapsibility and

weak collapsibility next.

IV. Collapsibility of a simplicial complex

In this section, we borrow the terminology from [Whi39a] to introduce the

concept of collapsibility of a simplicial complex. The simplex σ ∈ K is free
if it is a face of exactly one simplex τ = τ(σ) ∈ K of higher order (maximal
face). The collapse K\{σ} of K at a free simplex σ is the operation of
reducing K to K′, where K′ = K − σ − τ ; namely, this is the operation of
removing a simplex τ having an accessible (not included in another simplex)

face σ. A sequence of collapses done at the simplicies Σ = {σ1, σ2, . . .} is
called a collapsing sequence; formally:

89

Def. 12 (Collapsing sequence) Let K be a simplicial complex. Σ = {σ1, σ2, . . .}
is a collapsing sequence for K if σ1 is free in K = K(1) and each σi ,
i > 1, is free at K(i) = K(i−1)\{σi}. The resulting complex L obtained
collapsing K at Σ is denoted by L = K\Σ.

Note that, by definition, every collapsing sequence Σ has a corresponding

sequenceT = {τ(σ1), τ(σ2), . . .} of maximal faces being collapsed at every
step. The notion of collapsible simplicial complex is defined in [Whi39a]

as follows

Def. 13 (Collapsible simplicial complex) The simplicial complex K is collapsible
if there exists a collapsing sequence Σ such that K collapses to a single
vertex, i.e. K\Σ = {v} for some v ∈ V0(K).

While least-square problems with collapsible simplicial complexes can be

solved directly in an efficient way, [CFM+14a], collapsibility is a strong re-

quirement for a simplicial complex. In fact, determining whether the com-

plex is collapsible is in general NP-complete, [Tan16a], even though it can

be almost linear for a specific set of families of K, [CFM+14a]. Moreover,
simplicial complexes are rarely collapsible, as we discuss in the following.

Next, we recall the concept of a d-Core, [Tan10]:

Def. 14 (d-Core) A d-Core is a subcomplex of K such that every simplex of di-
mension d − 1 belongs to at least 2 d-simplices.

So, for example, a 2-Core of a 2-skeleton K, is a subcomplex of the
original simplex K such that every edge from V1(K) belongs to at least 2
triangles from V2(K). Finally, we say that K is d-collapsible if it can be
collapsed only by collapses at simplices σi of order smaller than d , dimσi ≤
d − 1. Then we have the following criteria:

Lem IV.12 ([LN21a]) K is d-collapsible if and only if it does not contain a d-core.
Proof The proof of the lemma above naturally follows from the definition of

the core: if the d-collapsing sequence is stuck, then the simplex collapsed

up to d-Core; conversely, if a d-Core exists in the complex, the collapsing

sequence necessarily includes its (d−1)-faces which are not collapsible. ■
The d-Core is the generalization of the cycle for the case of 1-collapsibility

of a classical graph, and finding a d-Core inside a complex K is neither
trivial nor computationally cheap. Note that a d-Core is generally dense

due to its definition and does not have a prescribed structure. We illustrate

simple exemplary cores in the case of d = 2 in Figure IV.1, hinting at the

combinatorial many possible configurations for a general d-Core, for d ≥ 2.

In Figure IV.2, we show that an arbitrary simplicial complex K tends to

90

1 2

3

4

1

2 3

4 5

6

Figure IV.1: 2-Core, examples: all 3-cliques in graphs are included in corresponding

V2(K).

contain 2-Cores as long as K is denser than the trivially collapsible case.
In the left panel of Figure IV.2, we consider the complex formed by the

triangulation of m0 random points on the unit square with a sparsity pattern

ν (such that the complex has ν share of all possible edges, ν = m1/
(m0
2

)
),

and we show that there is a threshold ν∆ such that the simplex generated this

way is collapsible when ν ≤ ν∆, but quickly forms a 2-Core when ν > ν∆.
A similar effect is observed in the case of sampled sensor networks, where

the complex is formed looking at the Euclidean distance of the sensors ∃σ ∈
V1(K) : σ = [v1, v2] ⇐⇒ ∥v1 − v2∥2 < ε, for a chosen percolation
parameter ε > 0. When the percolation parameter grows, the complex

immediately forms a core, c.f. Figure IV.2 right panel.

While collapsibility is a strong requirement, in the next section, we show

that a weaker condition is enough to design a preconditioner efficiently for

any “sparse enough” simplicial complex.

ν∆ 1.1ν∆ 1.25ν∆
0.25

0.5

1

sparsity (wrt triangulation)

pr
o
ba
bi
lit
y
o
f
2
−
C
or
e

V0(K) = 24
V0(K) = 14
V0(K) = 19

εmin 3εmin 10εmin

0.01

0.10

1.00

percolation, ε

pr
o
ba
bi
lit
y
o
f
2
−
C
or
e

V0(K) = 20
V0(K) = 10
V0(K) = 15

Figure IV.2: The probability of the 2-Core in richer-than-triangulation simplicial

complexes: triangulation of random points modified to have
[
ν
m0·(m0−1)

2

]
edges on

the left; random sensor networks with ε-percolation on the right. ν∆ defines the

initial sparsity of the triangulated network; εmin = Eminx,y∈[0,1]2 ∥x − y∥2 is the
minimal possible percolation parameter.

91

IV.I Weak collapsibility

Let the complex K be restricted up to its 2-skeleton, K = V0(K)∪V1(K)∪
V2(K), and assume K is collapsible. Then a collapsing sequence Σ necessar-
ily involves collapses at simplices σi of different orders: at edges (eliminating

edges and triangles) and at vertices (eliminating vertices and edges). One

can show that for a given collapsing sequence Σ there is a reordering Σ̃

such that dim σ̃i in the reordered sequence are non-increasing, [CFM
+14a,

Lemma 2.5]. Namely, if such a complex is collapsible, then there is a collapsi-

ble sequence Σ = {Σ1,Σ0} where Σ1 contains all the collapses at edges
first and Σ0 is composed of collapses at vertices. Note that the partial col-

lapse K\Σ1 = L eliminates all the triangles in the complex, V2(L) = ∅;
otherwise, the whole sequence Σ is not collapsing K to a single vertex. Since
V2(L) = ∅, the associated up-Laplacian L↑1(L) = 0.

Def. 15 (Weakly collapsible complex) A simplicial complex K restricted to its 2-
skeleton is called weakly collapsible, if there exists a collapsing sequence

Σ1 such that the simplicial complex L = K\Σ1 has no simplices of order
2, i.e. V2(L) = ∅ and L↑1(L) = 0.

Note that while a collapsible complex is necessarily weakly collapsible,

the opposite does not hold. Consider the following example in Figure IV.3:

the initial complex is weakly collapsible either by a collapse at [3, 4] or at

[2, 4]. After this, the only available collapse is at the vertex [4], leaving the

uncollapsible 3-vertex structure.

1 2

3 4

1 2

3 4

1 2

3

Figure IV.3: Example of weakly collapsible but not collapsible simplicial complex

For a given simplicial complex K, one can use the following greedy al-
gorithm to find a collapsing sequence Σ and test for collapsibility: at each

iteration perform any of possible collapses; in the absence of free edges,

the complex should be considered not collapsible. This greedy procedure is

illustrated in Algorithm 4.

Specifically, let ∆σ be a set of triangles of K containing the edge σ,
∆σ = {t | t ∈ V2(K) and σ ∈ t}. Then the edge σ is free and has only
one adjacent triangle τ = τ(σ) iff |∆σ| = 1; let F = {σ | |∆e | = 1} is a
set of all free edges. Note that |∆e | ≤ m0 − 2 = O(m0).
Algorithm 4 recursively picks up a free edge σ from the set F , performs

a collapse K ← K\{σ} and updates F for the collapsed subcomplex. Then,
the greedy approach may fail to find the collapsing sequence only if it gets

92

Algorithm 4 GREEDY COLLAPSE(K): greedy algorithm for the weak collapsi-
bility

Require: initial set of free edges F , adjacency sets {∆σi }
m1
i=1

1: Σ = [], T = [] ▷ initialize the collapsing sequence
2: while F ̸= ∅ and V2(K) ̸= ∅ do
3: σ ← pop(F), τ ← τ(σ) ▷ pick a free edge σ
4: K ← K\{σ}, Σ← [Σ σ], T← [T τ] ▷ τ is a triangle being
collapsed; τ = [σ, σ1, σ2]

5: ∆σ1 ← ∆σ1\τ , ∆σ2 ← ∆σ2\τ ▷ remove τ from adjacency lists

6: F ← F ∪ {σi | i = 1, 2 and |∆σi | = 1} ▷ update F if any of σ1 or σ2 has

become free

7: end while

8: return K, Σ, T

stuck on the collapsible complex, so the order of collapses matters. We

demonstrate the validity of the greedy Algorithm 4 in the following theorem:

Th IV.IV.11 Algorithm 4 finds a weakly collapsible sequence of 2-skeleton simplicies in

polynomial time. Additionally, it finds a collapsing sequence if the simplicial

complex is collapsible.

Proof Clearly, Algorithm 4 runs polynomially with respect to the number of sim-

plexes in K, so its consistency automatically yields polynomiality.
The failure of the greedy algorithm would indicate the existence of a weakly

collapsible complex K such that the greedy algorithm gets stuck at a 2-
Core, which is avoidable for another possible order of collapses. Among all

such complexes, let K be any minimal one with respect to the number of
triangles m2. Then there exiss a free edge σ ∈ V1(K) such that K\{σ}
is collapsible and another free edge σ′ ∈ V2(K) such that K\{σ′} is not
collapsible.

Note that if K is minimal then any pair of free edges σ1 and σ2 belong to
the same triangle: τ(σ1) = τ(σ2).

Indeed, for any τ(σ1) ̸= τ(σ2), K\{σ1, σ2} = K\{σ2, σ1}. Let
τ(σ1) ̸= τ(σ2) for at least one pair of σ1 and σ2; in our assumption,
either (1) both K\{σ1} and K\{σ2}, (2) only K\{σ1} or (3) none are
collapsible.

In the first case, either K\{σ1} or K\{σ2} is a smaller example of the
complex satisfying the assumption above (since a bad edge σ′ can not

be either σ1 or σ2 and belongs to collapsed complexes), hence, violating

the minimality. If only K\{σ1} is collapsible, then K\{σ2, σ1} is not
collapsible (since K\{σ2} is not collapsible and σ1 is free in K and in
K\{σ2} assuming τ(σ1) ̸= τ(σ2)); hence, K\{σ1, σ2} is not collapsible
(since K\{σ1, σ2} = K\{σ2, σ1} as we stated above), so K\{σ1} is a
smaller example of a complex satisfying the assumption.

93

Finally, if both K\{σ1} and K\{σ2} are collapsible, then for known σ′
such that K\{σ′} is not collapsible, τ(σ′) ̸= τ(σ1) or τ(σ′) ̸= τ(σ2),
which can be treated as the previous point.

As a result, for σ (K\{σ} is collapsible) and for σ′ (K\{σ′} is not
collapsible) it holds that τ(σ) = τ(σ′) ⇒ σ ∩ σ′ = {v}, so after
collapses K{σ} and K\{σ′} we arrive at two identical simplicial complexes
besides the hanging edge (σ′ or σ) irrelevant for the weak collapsibility. A

simplicial complex can not be simultaneously collapsible and not collapsible,

so the question of weak collapsibility can always be resolved by the greedy

algorithm, which has polynomial complexity. ■

Computational cost of the greedy algorithm The complexity of Algo-

rithm 4 rests upon the precomputed σ 7→ ∆σ structure that de-facto co-
incides with the boundary operator B2 (assuming B2 is stored as a sparse

matrix, the adjacency structure describes its non-zero entries). Similarly,

the initial F set can be computed alongside the construction of B2 ma-

trix. Another concession is needed for the complexity of the removal of

elements from ∆σi and F , which may vary from O(1) on average up to
guaranteed log(|∆σi |). As a result, given a pre-existing B2 operator, Algo-
rithm 4 runs linearly, O(m1), or almost linearly depending on the realisation,
O(m1 logm1). We demonstrate this asymptotic behavior later in the exper-
iments section.

V. Preconditioning through the subsampling of the 2-Core

Above, we have shown that the efficient computation of the Cholesky mul-

tiplier for L↑1 is complicated by arising cyclic terms. At the same time, the

absence of the cyclic terms in the Schur complements is a characteristic of

weakly collapsible complexes. Using this observation, in this section, we de-

velop a Cholesky-like preconditioning scheme based on an efficient Cholesky

multiplier for weakly collapsible complexes.

First, we demonstrate that a weakly collapsible simplicial complex K im-
mediately yields an exact Cholesky decomposition for its up-Laplacian:

Lem V.13 Assume the 2-skeleton simplicial complex K is weakly collapsible through
the collapsing sequence Σ. Let T be the corresponding sequence of max-

imal faces and let PΣ and PT be the permutation matrices of the two

sequences, i.e. such that [PΣ]i j = 1 ⇐⇒ j = σi , and similarly for PT.

Then C = PΣB2PT is an exact Cholesky mulitplier for PΣL
↑
1(K)P⊤Σ , i.e.

PΣL
↑
1(K)P⊤Σ = CC

⊤.

Proof Note that the sequences Σ and T (and the multiplication by the corre-

sponding permutation matrices) impose only the reordering of V1(K) and
V2(K), respectively; after such reordering the i -th edge collapses the i -

94

triangle. Hence, the first (i − 1) entries of the i -th column of the matrix
B2 ([B2]:,i =

√
w(ti)eti) are 0, otherwise one of the previous edges

is not free. As a result, C is lower-triangular and by a direct computation

one has CC⊤ = PΣL
↑
1(K)P⊤Σ . ■

An arbitrary simplicial complex K is generally not weakly collapsible (see
Figure IV.1). Specifically, weak collapsibility is a property of sparse simplicial

complexes with the sparsity being measured by the number of triangles m2
(in the weakly collapsible case m2 < m1 since each collapse at the edge

eliminates exactly one triangle); hence, the removal of triangles from V2(K)
can potentially destroy the 2-Core structure inside K and make the complex
weakly collapsible.

With this observation, in order to find a cheap and effective preconditioner

for L↑1(K), one may search for a weakly collapsible subcomplex L ⊆ K and
use its exact Cholesky multiplier C as a preconditioner for K.
Specifically, such subcomplex L should satisfy the following properties:

(1) it has the same set of nodes and edges, V0(L) = V0(K) and V1(L) =
V1(K);

(2) triangles in L are subsampled, V2(L) ⊆ V2(K);

(3) L is weakly collapsible through some collapsing sequence Σ and corre-
sponding sequence of maximal faces T;

(4) L has the same 1-homology as K, that is kerL1(K) = kerL1(L);

(5) the Cholesky multiplier C = PΣB2(L)PT improves the condition num-
ber of L↑1(K), namely κ+(C†PΣL

↑
1(K)P⊤Σ C

†⊤)≪ κ+(L↑1(K)).

Let us comment on the conditions above. Conditions (1) and (2) are au-

tomatically met when a subcomplex L is obtained from K through the elimi-
nation of triangles. Condition (3) is a structural requirement on L and can be
guaranteed by the design of the subcomplex using the proposed Algorithm 5.

Condition (4) guarantees that the preconditioning strategy is bijective, as we

show in the next Lemma V.14. Finally, condition (5) asks for a better con-

dition number and is checked numerically in Section VI. However, whilst one

can not guarantee improvement in preconditioning quality, we can provide an

explicit formula for the condition number κ+(C
†PΣL

↑
1(K)P⊤Σ C

†⊤) assum-

ing an arbitrary subcomplex forms the preconditioner C. We provide such a

formula in the next Subsection V.I and discuss how to use it to construct a

preconditioner via heavy collapsible subcomplex.

Lem V.14 (On the conservation of the 1-homology red and condition (4)) For

any subcomplex L above, the following statements about 1-homology hold:

(i) subcomplex L satisfying conditions (1) and (2) can only extend the

95

kernel, i.e. we have kerL1(K) ⊆ kerL1(L);

(ii) condition (4) guarantees a bijective preconditioning scheme in the

sense that the solution to the original least-square problem and the

preconditioned one coincide.

Proof For (i) it is sufficient to note that the elimination of the triangle t ∈
V2(K) lifts the restriction e⊤t x = 0 for x ∈ kerL1(K); hence, if
x ∈ kerL1(K), then x ∈ kerL1(L). For (ii), note that bijection be-
tween the systems L↑kx = f and

(
C†L↑kC

†⊤
)
C⊤x = C†f is guaran-

teed by kerC⊤ = kerL↑k = kerB
⊤
k+1 (assuming x ⊥ kerL

↑
k). Then,

by the spectral inheritance principle, [GST23, Thm. 2.7], kerL↑k(X) =
kerLk(X) ⊕ B⊤k · imL

↑
k−1. The second part, B

⊤
k · imL

↑
k−1, consists of

the action of B⊤k on non-zero related eigenvectors of L
↑
k−1 and is not de-

pendent on Vk+1(K) (triangles, in case k = 1), hence remains preserved
in the subcomplex L. Since by condition (4) kerL1(K) = kerL1(L), the
same statement holds for up-Laplacians, kerL↑1(K) = kerL

↑
1(L). Since

C is an exact Cholesky multiplier for L↑1(L), kerL
↑
1(L) = kerC⊤ and

kerL↑1(K) = kerB⊤2 yielding kerC⊤ = kerB⊤2 and bijectivity. ■

V.I Preconditioning quality by the subcomplex

Note that subcomplex L is fully defined by the subset T of subsampled trian-
gles, T ⊂ V2(K), so L = V0(K)∪V1(K)∪T); let us assume, additionally,
that subcomplex L satisfies condition (4) above. We introduce the following
matrix notation corresponding to the subsampling:

Def. 16 (Subsampling matrix) Let T be a subset of triangles, T ⊂ V2(K), then
Π is a subsampling matrix if

♦ Π is diagonal, Π ∈ Rm2×m2;

♦ (Π)i i = 1 ⇐⇒ i ∈ T; otherwise, (Π)i i = 0.

Assuming subset T of subsampled triangles (or, equivalently, the sub-

sampling matrix Π) is given, one needs only the triangle weight matrix Ŵ in

order to obtain L↑1(L) and the corresponding Cholesky multiplier C.
Generally speaking, (squared) weights Ŵ 22 of sampled triangles T may

differ from the original weights W 22 . Let Ŵ
2
2 = W

2
2 + ∆W2, where ∆W2

is still diagonal, but entries are not necessarily positive. Then, one can for-

mulate the question of the optimal weight redistribution as the optimization

problem:

min
∆W2

∥∥∥L↑1(L)− L↑1(K)∥∥∥ = min
∆W2

∥∥∥B2 [Π(W 22 + ∆W2)Π−W 22]B⊤2 ∥∥∥
96

Here and only here, since we manipulate weights, we use the unweighted B2
matrix so one can have explicit access to the weight matrix W2.

Lem V.15 (Optimal weight choice for the subcomplex) Let L be subcomplex of K
with fixed corresponding subsampling matrix Π. Then, the optimal weight

perturbation for the subsampled triangles is

∆W2 ≡ 0,

so the best choice of weights of subcomplex is Ŵ2 = W2Π.

Proof Let ∆W2 = ∆W2(t) where t is a time parametrization; we can com-

pute the gradient ∇∆W2σ1
(
L↑1(L)− L

↑
1(K)

)
through the derivative

d
dtσ1

(
L↑1(L)− L

↑
1(K)

)
:

σ̇1 = x
⊤B2Π ˙∆W2ΠB

⊤
2 x =

〈
B2Π ˙∆W2ΠB

⊤
2 , xx

⊤
〉
= Tr

(
B2Π ˙∆W2ΠB

⊤
2 xx

⊤
)
=

=
〈
ΠB⊤2 xx

⊤B2Π, ˙∆W2
〉
=
〈
∇∆W2σ1, ˙∆W2

〉
By projecting onto the diagonal structure of the weight perturbation,

∇diag∆W2σ1 = diag
(
ΠB⊤2 xx

⊤B2Π
)
.

Note that diag
(
ΠB⊤2 xx

⊤B2Π
)
i i
= |ΠB⊤2 x|2i ; then the stationary point

is characterized by ΠB⊤2 x = 0 ⇐⇒ x ∈ kerL↑1(L) = kerL
↑
1(K)

(see Lemma V.14). The latter is impossible since x is the eigenvector

corresponding to the largest eigenvalue; hence, since Π(W 22 + ∆W2)Π ̸=
W 22 , the optimal perturbation is ∆W2 ≡ 0. ■

Rem V.21 Note that the results of Lemma V.15 do not contradict the sampling mech-

anism for the sparsified simplicial complex from Theorem IV.III.9. Indeed,

in the construction (however computationally unobtainable in practice) of

the sparsifier, simplices from Vk+1(K) are sampled with an altered weight.
At the same time, due to the fact that sampling is performed with replace-

ment, simplices in the final sparsified complex have, on average, the same

weights (see the proof of Theorem IV.III.9 in [OPW22]), consistent with

Lemma V.15.

We have established the optimal choice of the weights provided by the

subsampling matrixΠ. As a result, assumingB2 is weighted, optimal L
↑
1(L) =

B2ΠB
⊤
2 . Now we proceed to characterize the quality of the precondition-

ing in terms of the matrix Π in Theorem IV.V.12, starting with a necessary

technical relation between imB⊤2 and ker Π.

97

Rem V.22 Knowing the optimal weight for sampled triangles from Lemma V.15, one

needs to preserve the kernel of subsampled Laplacian

ker
(
B2ΠB

⊤
2

)
= ker

(
B2B

⊤
2

)
to form a correct preconditioner C. Since we have Π = Π2, kerL↑1 =

kerB⊤2 and ker
(
B2ΠB

⊤
2

)
= ker

(
ΠB⊤2

)
. Additionally, kerB⊤2 ⊆

ker
(
ΠB⊤2

)
, so ker

(
B2ΠB

⊤
2

)
̸= ker

(
B2B

⊤
2

)
⇐⇒ there exists

y ∈ imB⊤2 such that B⊤2 y ̸= 0 and B⊤2 y ∈ ker Π. Then, in order to
preserve the kernel, one needs imB⊤2 ∩ ker Π = {0}.

Th IV.V.12 (Conditioning by the Subcomplex) Let L be a weakly collapsible sub-
complex of K defined by the subsampling matrix Π and let C be a Cholesky
multiplier of L↑1(L) defined as in Lemma V.13. Then the conditioning of
the symmetrically preconditioned L↑1 is given by:

κ+

(
C†PΣL

↑
1P
⊤
Σ C
†⊤
)
=

(
κ+

((
S1V

⊤
1 Π
)†
S1

))2
= (κ+(ΠV1))

2 ,

where V1 forms the orthonormal basis on imB
⊤
2 .

Proof By Lemma V.15,W2(L) = ΠW2; then let us consider the lower-triangular
preconditioner C = PΣB2ΠPT for PΣL

↑
1P
⊤
Σ ; then the preconditioned ma-

trix is given by:

C†
(
PΣL

↑
1P
⊤
Σ

)
C⊤† = (PΣB2ΠPT)

†
(
PΣL

↑
1P
⊤
Σ

)
(PΣB2ΠPT)

⊤† =

= P⊤T (B2Π)
† L↑1 (B2Π)

⊤† PT

Note that PT is unitary, so κ+(PTXP
⊤
T) = κ+(X), hence the prin-

ciple matrix is (B2Π)
† L↑1 (B2Π)

⊤† = (B2Π)
†B2B⊤2 (B2Π)

⊤†
. Since

we have that κ+(X
⊤X) = κ2+(X), then in fact one needs to con-

sider κ+

(
(B2Π)

† (B2)
)
. Let us consider the SVD-decomposition for

B2 = USV
⊤; more precisely,

B2 = USV
⊤ =

(
U1 U2

)(S1 0
0 0

)(
V ⊤1
V ⊤2

)
= U1S1V

⊤
1

where S1 is a diagonal invertible matrix. Note that U and U1 have or-

thonormal columns and S1 is diagonal and invertible, so

(B2Π)
†B2 =

(
SV ⊤Π

)†
SV ⊤ =

(
S1V

⊤
1 Π
)†
S1V

⊤
1

98

By the definition of the condition number κ+, one needs to compute σ
+
min

and σ+max where:

σ+
min \max = min \max

x⊥ker
((
S1V
⊤
1 Π

)†
S1V
⊤
1

)
∥∥∥(S1V ⊤1 Π)† S1V ⊤1 x∥∥∥

∥x∥

Note that imB⊤2 = im V1 = im V1S1, so by Remark V.22, ker Π ∩
im V1S1 = {0}, hence ker ΠV1S1 = ker V1S1. Since ker V1S1 ∩
imS1V

⊤
1 = {0}, one gets ker ΠV1S1 ∩ imS1V ⊤1 = {0}. By the proper-

ties of the pseudo-inverse we have that ker ΠV1S1 = ker
(
S1V

⊤
1 Π
)⊤
=

ker
(
S1V

⊤
1 Π
)†
; as a result, ker

((
S1V

⊤
1 Π
)†
S1V

⊤
1

)
= kerS1V

⊤
1 . Since

S1 is invertible, ker
((
S1V

⊤
1 Π
)†
S1V

⊤
1

)
= ker V ⊤1 .

For x ∈ ker V ⊤1 ⇒ x ∈ im V1, so x = V1y. Since V ⊤1 V1 = I, ∥x∥ =
∥V1y∥ and:

σ+
min \max = miny

\max
y

∥∥∥(S1V ⊤1 Π)† S1y∥∥∥
∥y∥ =

z=S1y
min
z
\max
z

∥∥∥(S1V ⊤1 Π)† z∥∥∥∥∥S−11 z∥∥
Note that v =

(
S1V

⊤
1 Π
)†
z ⇐⇒

{
S1V

⊤
1 Πv = z

v ⊥ kerS1V ⊤1 Π
and

kerS1V
⊤
1 Π = ker V

⊤
1 Π, so:

σ+
min \max = min \max

v⊥ker V ⊤1 Π

∥v∥
∥V ⊤1 Πv∥

Hence κ+

(
C†PΣL

↑
1P
⊤
Σ C
†⊤
)
= κ2+(V

⊤
1 Π) = κ

2
+(ΠV1).

■

V.II Algorithm: Preconditioner via heavy collapsible subcomplex

Following Theorem IV.V.12, note that C is a perfect preconditioner for

PΣL
↑
1P
⊤
Σ if Π = I, since κ+(V1) = 1 and we would compute the ex-

act Cholesky decomposition. However, this is computationally prohibitive.

Thus, it is natural to try to find a sparser Π so that ΠV1 is as close to

V1 as possible. Multiplication by Π cancels rows in V1 corresponding to the

eliminated triangles; at the same time, rows in V1 are scaled by the weights

of the triangles since spanV1 = W2 imB
⊤
2 , so we expect to Π eliminating

triangles with lowest weights to be a good choice.

Based on this observation and theorem IV.V.12, we provide an algorithm

for preconditioning L↑1(K), which aims to eliminate triangles of the lowest

99

weight, thus constructing what we call a heavy weakly collapsible subcom-

plex L with largest possible total weight of triangles. The exact Cholesky
multiplier C of L↑1(L) is cheap to compute and is used as a preconditioner
for L↑1(K).
The proposed Algorithm 5 works as follows: start with an empty subcom-

plex L; then, at each step, try to extend L with the heaviest unconsidered
triangle t: L → L ∪ {t} – here the extension includes the addition of the
triangle t with all its vertices and edges to the complex L. If the extension
L∪ {t} is weakly collapsible, it is accepted as the new L, otherwise t is re-
jected; in either case the triangle t is removed from the list of unconsidered

triangles, i.e. t is not considered for a second time.

Algorithm 5 HEAVY SUBCOMPLEX(K,W2): construction a heavy collapsible
subcomplex

Require: the original complex K, weight matrix W2
1: L ← ∅, T← ∅ ▷ initial empty subcomplex
2: while there is unprocessed triangle in V2(K) do
3: t ← nextHeaviestTriangle(K,W2) ▷ e.g. iterate through
V2(K) sorted by weight

4: if L ∪ {t} is weakly collapsible then ▷ run
GREEDY COLLAPSE(L ∪ {t}) (Algorithm 4)

5: L ← L ∪ {t}, T← [T t] ▷ extend L by t
6: end if

7: end while

8: return L, T, Σ ▷ here Σ is the collapsing sequence of L

Rem V.23 We show next that a subcomplex L sampled with Algorithm 5 satisfies
properties (1)–(4) above: indeed, V0(K) = V0(L), V1(K) = V1(L) and
L is weakly collapsible by construction. It is less trivial to show that the
subsampling L does not increase the dimensionality of 1-homology.
Assuming the opposite, the subcomplex L cannot have any additional 1-
dimensional holes in the form of smallest-by-inclusion cycles of more than

3 edges: since this cycle is not present in K, it is “covered” by at least
one triangle t which necessarily has a free edge, so L can be extended
by t and remain weakly collapsible. Alternatively, if the only additional

hole corresponds to the triangle t not present in L, then, reminiscent of
the proof for Theorem IV.IV.11, let us consider the minimal by inclusion

simplicial complex K for which it happens. Then, the only free edges in
L are the edges of t; otherwise, K is not minimal. At the same time, in
such setups t is not registered as a hole since it is an outer boundary of

the complex L, e.g. consider the exclusion of exactly one triangle in the
tetrahedron case, Figure IV.1 7

7 algebraically, this

fact is extremely

dubious: due to the

lack of free edges,

there is a “path”

between any two

triangles in L adja-
cent to t through

adjacent triangles in

L, which reduces
degrees of freedom

in the circulation

of the flow around

t and brings it to

kerB⊤2 .

, which proves that L cannot extend the
1-homology of K.

100

The complexity of Algorithm 5 isO(m1m2) at worst, which could be con-
sidered comparatively slow: the algorithm passes through every triangle in

V2(K) and performs collapsibility check via Algorithm 4 on L which never has
more than m1 triangles since it is weakly collapsible. Note that Algorithm 5

and Theorem IV.V.12 do not depend on K being a 2-Core; moreover, the
collapsible part of a genericK is necessarily included in the subcomplex L pro-
duced by Algorithm 5. Hence a prior pass of GREEDY COLLAPSE(K) reduces
the complex to a smaller 2-Core K′ with faster HEAVY SUBCOMPLEX(K′,W2)
since V1(K′) ⊂ V1(K) and V2(K′) ⊂ V2(K).
We summarise the whole procedure for computing the preconditioner

next:

♦ reduce a generic simplicial complex K to a 2-Core K′ through the
collapsing sequence Σ1 and the corresponding sequence of triangles

T1 through the greedy Algorithm 4;

♦ form a heavy weakly connected subcomplex L from K′ with the col-
lapsing sequence Σ2 and the corresponding sequence of triangles T2
using Algorithm 5;

♦ form the preconditioner C by permuting and subsampling B2 using the
subset of triangles T = T1 ∪ T2 (that determines the subsampling
matrix Π) and the associated collapsing sequence Σ = Σ1 ∪ Σ2, via
C = PΣB2ΠPT.

original

complex K
2-Core K′
K′ ⊂ K

weakly collapsible

heavy subcomplex LHEAVY SUBCOMPLEX(K′,W2)
Algorithm 5

GREEDY COLLAPSE(K)
Algorithm 4

projection matrix Π
preconditioner C

Figure V.1: The scheme of the simplicial complex transformation: from the original

K to the heavy weakly collapsible subcomplex L.

We refer to the preconditioner built in this way (see also Figure V.1) as

a heavy collapsible subcomplex preconditioner (HeCS-preconditioner).

Rem V.24 (Adjacency heuristic) Algorithm 5 naturally starts with the accumulation

phase where the number of triangles in L is too small for it to be non-
collapsible. Indeed, one may avoid calling Algorithm 4 during that phase

if the expansion of L by the next triangle t does not create triangles in
V2(L) adjacent to 3 or more already chosen triangles; with the preexisting
B2 structure such check costs O(1).

VI. Benchmarking: triangulation

101

We present here a number of numerical experiments to validate the perfor-

mance of the proposed preconditioning strategy. All the experiments are run

using julia on Apple M1 CPU and can be reproduced with the code available

at https://github.com/COMPiLELab/HeCS.

VI.I Conjugate Gradient Least-Square method

The preconditioning performance for the least-square problemmin
x⊥kerL↑1

∥L↑1x−

f∥ is measured on the conjugate gradient least-square method (CGLS),
[HS+52, BES98], Algorithm 3. The method requires the ability to com-

pute matvec operation for the matrix L↑1 and its preconditioned alternatives;

CGLS converges as (
√
κ+(A)− 1)/(

√
κ+(A)+ 1) and we run it until the

infinity norm of the residual ri = L
↑
1xi − f falls below a given threshold,

i.e. ∥ri∥∞ ≤ ϵ.

VI.II Shifted incomplete Cholesky preconditioner

L↑1 is a singular matrix. Assuming U is an orthogonal basis of kerL
↑
1, one can

move to L↑1 → L
↑
1 + αUU

⊤, which can be preconditioned by non-singular

methods. Specifically, we use Cα = ichol(L
↑
1 + αUU

⊤) to compare with

the HeCS preconditioner, Figure V.1.

Computing such a shift requires the ability to efficiently compute kerL↑1,

which, in principle, has a complexity comparable to the original system. On

the other hand, in our setting, given the spectral inheritance principal from

[GST23, Thm. 2.7], an orthogonal basis U can be formed directly using

the vectors B⊤1 x, x ∈ (1)⊥, when K has trivial 0- and 1-homology (i.e.
it is formed by one connected component, kerL0 = span{1}, and has no
1-dimensional holes, kerL1 = 0).

Note that the HeCS preconditioner instead works without requiring any

triviality of the topology of the complex.

VI.III Problem setting: Enriched triangulation as a simplicial complex

To illustrate the behaviour of the preconditioned system C†PΣL
↑
1P
⊤
Σ C
†⊤, we

consider an sparse simplicial complex K, i.e. we assume m2 = O(m1 lnm1).
Note that the developed routine can be applied in denser cases, although one

can expect a certain loss of efficiency. To generate problem settings within

this range, K is synthesized as an enriched triangulation of N points on the
unit square with a prescribed edge sparsity pattern ν as follows:

(1) V0(K) is formed by the corners of the unit square and (N − 4) points
sampled uniformly at random from U

(
[0, 1]2

)
;

(2) the Delaunay triangulation of V0(K) is computed; all edges and 3-cliques
of the produced graph are included in V1(K) and V2(K) respectively;

102

https://github.com/COMPiLELab/HeCS

(3) d ≥ 0 edges (excluding the outer boundary) are chosen at random
and eliminated from V1(K); triangles adjacent to the chosen edges are
eliminated from V2(K). As result, produced complex K has a non-trivial
1-homology;

(4) the sparsity pattern is defined as ν = m2/q(m1) where parameter

q(m1) is the highest density of triangles for the sparse case; additional

edges on V0(K) are added to V1(K) alongside with new appearing 3-
cliques to reach the target m2/q(m1) value. The initial sparsity pattern

of the triangulation is denoted by ν∆.

VI.IV Heavy subcomplex and triangle weight profile

Algorithm 5, aims to build a heavy weakly collapsible subcomplex L such
that the total weight of triangles in L is close to the total weight of triangles
in the original complex K. At the same time, the number of triangles in L
is limited, m2(L) < m1(L) = m1(K), due to the weak collapsibility, while
the number of triangles in K can go up to q(m1(K)). Hence, the quality
of the preconditioner is determined by the triangle weight distribution w(·)
on V2(K): namely, if w2(t) are distributed uniformly and independently, the
quality of the preconditioning falls rapidly after ν > ν∆ and, at the same

time, the original matrix L↑1 remains well-conditioned in such configurations.

Instead, in this section, we observe that unbalanced weight distributions lead

to ill-conditioned L↑1 and consider the following two situations:

♦ the weights of triangles are random variables that are independent of each
other and distributed as heavy-tailed Cauchy distributions or bi-modal

Gaussian distribution N (1, σ1) + N (1/3, σ2). This way, we generate
a sufficiently large number of heavy triangles and a cluster of reducible

triangles with small w2(t);

♦ the weights of triangles are topologically dependent, that is w2(t) is a
function of the weights of the neighboring triangles. A way to implement

this dependence is to set w2(t) = f (w1(e1), w1(e2), w1(e3)) for the

triangle t = (e1, e2, e3). Two well-known common choices of f are

the min-rule w2(t) = min(w1(e1), w1(e2), w1(e3)), [GST23, LCK
+19],

and the product rule w2(t) = w1(e1)w1(e2)w1(e3), [CM21, CMK21].

In this way, the edge weight profile w1(·) on V1(K) is transformed to an
unbalanced distribution w2(t).

VI.V Timings

One needs to separately discuss the time cost of the computation of the

preconditioning operator (as a tuplet C and the permutation PΣ) and the

matvec computation for the preconditioned operator C†PΣL
↑
1P
⊤
Σ C
†⊤.

103

100 150 200 250

10−6

10−5

10−4

m, number of edges

ti
m
e
of

si
n
gl
e
it
er
at
io
n

n = 32, original system
n = 32, shifted ichol

n = 32, subcomplex preconditioner

(a) Single iteration timing: the av-

erage time of matvec computation

for the original system (blue), shifted

ichol (orange) and HeCS precondi-

tioner (green).

1 1.5 2 2.5

10−3

10−2

10−1
∼ m1(K)

·m2(K)

m\m∆, number of edges

co
m
p
u
ta
ti
on

ti
m
e
of

C
,
s

n = 14, precon
n = 20, precon
n = 26, precon
n = 32, precon

(b) Computation time for the heavy

subcomplex preconditioner in case of

enriched triangulations on m0 vertices

Figure VI.1: Timings of HeCS-perconditioner

Note that matvec of L↑1 has the complexity of the number of non-zero

elements, O(m2); the HeCS preconditioner C has ≤ 3m1 non-zero elments
and lower triangular structure, so matvecs of either C† and C†⊤, as well as

the permutation matrix PΣ, have complexity O(m1). Hence, the complexity
of each preconditioned CGLS iteration is O(m2 + m1), as opposed to the
original O(m2); asymptotically one expects m2 ≫ m1, so the precondition-
ing scheme is efficient. On the other hand, the shifted ichol preconditioner

Cα loses the sparsity due to the shift; as a result, the application of C
†
α costs

O(m0m1 +m2) since rankU = O(m0) in all considered scenarios.
In Figure VI.1a we compare the performance of the two preconditioners

for the enriched triangulation on m0 = 32 vertices and a varying number of

edges m1: the cost of one CGLS iteration for HeCS preconditioner is higher

than the original system but asymptotically approaches the matvec cost of

the unpreconditioned system, whilst the ichol-preconditioner Cα is an order

larger.

Additionally, we demonstrate the time complexity for HeCS preconditioner

computation for enriched triangulation on m0 = 14, 20, 26, 32 vertices and

varying total edge number m1, Figure VI.1b (here m∆ denotes the number of

edges in the initial triangulation); as K becomes denser simplicial complex,
HEAVY COMPLEX(K) follows the expected complexity O(m1 · m2). In com-
parison with the complexity of Cholesky decomposition which is O(m31), by
design m2 = O(m1 lnm1) and the overall cost of HeCS computation never
breaches O(m21 ln(m1)).

104

VI.VI Performance of the preconditioner

We demonstrate the quality of HeCS preconditioner for enriched triangula-

tions on m0 vertices with d = 2 initially eliminated edges and for varying

total number of edgesm1 such that the initial sparsitym2⧸q(m1) is increased
until the induced number of triangles m2 reaches the density of the Spielman

sparsifier q(m1) = 9C
2m1 ln (4m1), Theorem IV.III.9. For each pair of

parameters

(
m0, m2⧸q(m1)

)
, k = 25 simplicial complexes are generated;

triangle weight profile w(t) is given by the following two scenarios:

(1) indendent triangle weights with bi-modal imbalance, where w(t) ∼
N (1, 1/3) for the original triangulation t ∈ K∆ andw(t) ∼ N (1/2, 1/6)
otherwise, Figure VI.2;

(2) dependent triangle weight through the min-rule: w(t) = min{w1(e1), w2(e2), w3(e3)}
for t = (e1, e2, e3) and edge weights are folded normal variables, w1(ei) ∼
|N |[0, 1], Figure VI.3.

For each weight profile we measure the conditionality (κ+(C
†PΣL

↑
1P
⊤
Σ C
†⊤)

vs κ+(L
↑
1)), Figures VI.2 and VI.3, left, and the corresponding number of

CGLS iteration, Figures VI.2 and VI.3, right. In the case of the min-rule, we

provide a high-performance test for matrices up to 105 in size.

In the case of the independent triangle weights, Figure VI.2, HeCS pre-

conditioning shows gains in κ+ for the first, sparser part of the simplicial

complexes; conversely, for the min-rule profile induced by the folded nor-

mal edges’ weights, Figure VI.3, developed method outperforms the original

system for all tested sparsity patterns m2⧸q(m1). Noticeably, HeCS precon-
ditioning performs better in terms of the actual CGLS iterations, Figures V.1

and VI.2, right, than in terms of κ+, and, hence, significantly speeds up the

iterative solver for L↑1.

Finally, we demonstrate the comparative performance with the shifted

incomplete Cholesky preconditioner, Cα, Figure VI.4; here we are forced to

guarantee trivial 0- and 1-homologies, so no edges are eliminated in the tri-

angulation, d = 0, and we check the kernel of L1 for triviality after the

generation of K. Similarly to the previous results, preconditioning with the
shifted ichol Cα is more efficient than HeCS preconditioning for the “denser

half” of the considered simplicial complexes, which means that our devel-

oped method still performs better in case of the sparser K. Moreover, the
applicability of the shifted ichol is limited to the cases of trivial homologies,

which is not the case for HeCS preconditioning.

105

0.3 0.4 0.5 0.6 0.7 0.8

100

101

102

103

104

m2/q(m1), sparsity pattern

κ
+
,
co
n
d
it
io
n
n
u
m
b
er

m0 = 16, original m0 = 16,precon

m0 = 25, original m0 = 25,precon

m0 = 50, original m0 = 50,precon

m0 = 100, original m0 = 100,precon

0.3 0.4 0.5 0.6 0.7 0.8

100

102

m2/q(m1), sparsity pattern

n
u
m
b
er

of
C
G
L
S
it
er
at
io
n
s

Figure VI.2: Preconditioning quality for enriched triangulations with a varying num-

ber of verticesm0 = 16, 25, 50, 100 and sparsity patternsm2⧸q(m1) and independent
bi-modal weight profile: condition numbers κ+ on the left and the number of CGLS

iterations on the right. Average results among 25 generations are shown in solid

(HeCS) and in the dash (original system); colored areas around the solid line show

the dispersion among the generated complexes.

0.2 0.4 0.6 0.8 1.0

100

105

m2/q(m1), sparsity pattern

κ
+
,
co
n
d
it
io
n
n
u
m
b
er

m0 = 25, original m0 = 25,precon

m0 = 100, original m0 = 100,precon

m0 = 400, original m0 = 400,precon

m0 = 1600, original m0 = 1600,precon

0.25 0.50 0.75 1.00 1.25

100

102

m1 ≈ 104

m1 ≈ 105

m1 ≈ 103

m1 ≈ 102

m2/q(m1), sparsity pattern

n
u
m
b
er

of
C
G
L
S
it
er
at
io
n
s

Figure VI.3: Preconditioning quality for enriched triangulations with a varying num-

ber of vertices m0 = 25, 100, 400, 1600 and sparsity patterns m2⧸q(m1) and depen-
dent min-rule weight profile with folded normal edge weights: condition numbers κ+
on the left and the number of CGLS iterations on the right. Average results among

25 generations are shown in solid (HeCS) and in the dash (original system); colored

areas around the solid line show the dispersion among the generated complexes.

106

0.5 0.6 0.7 0.8
100

102

m2/q(m1), sparsity pattern

κ
+
,
co
n
d
it
io
n
n
u
m
b
er

m0 = 25, original
m0 = 25, shifted ichol

m0 = 25,precon

0.5 0.6 0.7 0.8
100

101

102

m2/q(m1), sparsity pattern

n
u
m
b
er

of
C
G
L
S
it
er
at
io
n
s

Figure VI.4: Comparison of the preconditioning quality between HeCS(solid), shifted

ichol (semi-transparent) and original system (dashed) for the enriched triangulation

on m0 = 25 vertices and varying sparsity patterns ν and dependent min-rule weight

profile with uniform edge weights: condition numbers κ+ on the left and the number

of CGLS iterations on the right. Average results among 25 generations are shown

in solid (HeCS and ichol) and in the dash (original system); colored areas around

the solid line show the dispersion among the generated complexes.

107

V Conclusion and future prospects

Among the wide variety of higher-order models for relational data, simpli-

cial complexes strike a balance between an intrinsic description of the higher-

order structure of the system and tractable matrix machinery allowing ex-

ploration of higher-order topological features via homology groups Hk and
corresponding higher-order Laplacian operators Lk ; such operators are direct

discrete analogs of the continuous higher-order Helmholzian operators on

manifolds and are shown to converge to them in the thermodynamic limit,

[CM21, CMK21]. The elements of the kernel of the higher-order Laplacian

operators correspond to k-dimensional holes in the complex (connected com-

ponents, one-dimensional holes, voids, etc.); the corresponding eigenvectors

and eigenvalues provide information about higher-order topological features

[ES19, GS23a] and can be used to describe the underlying dynamics, e.g.

in case of synchronization or higher-order diffusion, [GDPG+21, TB20], and

simplicial random walks, [SBH+20], or identify functional higher-order struc-

tures in the data, [LCK+19].

I. Overview of main contributions

In this work we discussed the concepts of the topological stability of the

weighted homology group Hk and the corresponding k-th order Laplacian
operator Lk through the intrinsic numerical procedure, and, vice versa, nu-

merical stabilization of linear system associated with Lk (like Lkx = f)

via topological properties of the underlying simplicial complex (heavy weakly

collapsible subscomplex).

Specifically,

♦ we have proposed a generalized weighting scheme for the simplicial
complex K coherent with Hodge’s theory which allows the proper in-
troduction of weighted homology groups Hk and weighted Laplacian
operators Lk ; additionally, for non-degenerate weights, we have demon-

strated the conservation of dimensionality, Proposition 1, between all

weighted and combinatorial cases for each of curl, gradient and har-

monic subspaces as a conjecture of Hodge decomposition in Theo-

rem II.III.2;

♦ we have shown principle spectral inheritance , Theorem III.III.5, de-
scribing the relationship between the spectra of up- and down-Laplacians

σ(L↑k) and σ(L
↓
k) of consecutive orders as a foundation for topological

108

stability and developed solver for the linear system;

♦ we have addressed finding the smallest perturbation of weights of edges
W1 sufficient for creating a new k-dimensional hole in K; based on the
spectral inheritance principle, we have proposed a numerical method

of minimizing target first non-zero eigenvalue λ+ of L
↑
k (instead of

Lk) thus adding additional dimension to kerLk and Hk and avoid-
ing homological pollution; the minimal perturbation is then obtained

through the alternating norm-constrained/unconstrained gradient

flow for the associated spectral matrix nearness problem;

♦ in the case of numerical stability, we have developed an efficient solver
for linear system Lkx = f in the least square sense; based on Hodge de-

composition, Theorem II.III.2, and principle spectral inheritance, The-

orem III.III.5, we have demonstrated the reduction of such system to

the system with up-Laplacian, Theorem IV.I.7;

♦ we have shown that the attempt of building an exact Cholesky precon-
ditioner for the up-Laplacian system L↑kx = f leads to the introduction

of the concept of weakly collapsible complex for which Cholesky de-

composition is immediate and cheap, Lemma V.13. Additionally, we

have demonstrated that weak collapsibility is polynomially solvable via

the greedy algorithm in Theorem IV.IV.11;

♦ we have built an efficient preconditioner for the up-Laplacian L↑k by
finding a heavy collapsible subcomplex motivated by the demon-

strated relation for preconditioning quality of any subcomplex in The-

orem IV.V.12;

♦ Algorithm 1 for the topological instability and Algorithm 5 for precon-
ditioning are successfully tested on the synthetic triangulation-based

datasets; additionally, we provide results for several transportation net-

works in Table 2.

Contents of the thesis are primarily based on papers “Quantifying the

Structural Stability of Simplicial Homology” (published in Journal of Scien-

tific Computing in August 2023, [GST23]) and “Cholesky-like Preconditioner

for Hodge Laplacians via Heavy Collapsible Subcomplex” (under review in

SIMAX, arXiv:2401.15492).

II. Future projects

Results achieved in the current work suggest the following potential directions

for further research:

1. in terms of future applications, the developed method of determining

structural instabilities in the simplicial complexes may be further ex-

109

plored in various applications (e.g. one can provide a more detailed

in-depth analysis of instability-related anomalies in transportation net-

works similar to Figure VI.5 and Table 2); specifically, as homology

is frequently discussed in neuroscience, [LCK+19], we suggest fur-

ther exploration of topological stability for brain connectomics (e.g.

from ADNI dataset, https://adni.loni.usc.edu/, or Human Con-

nectome Projects, https://www.humanconnectome.org/) for differ-

ent stages of degenerative conditions (e.g. Alzheimer’s disease). Any

reasonable attempt of a meaningful analysis here would require a ro-

bust pipeline between fMRI/ECG images to the brain connectomics for

varying levels of the correlation cutoffs (akin to persistent homology,

[OPT+17]) with the following study of the instability distribution per

each stage of the degenerative condition and their localizations on the

statistically significant levels;

2. on the purely combinatorial side of the task, it would be a natural

extension to posit a question of the minimal perturbation sufficient

to decrease the homology group Hk (for instance, by eliminating the
common edge between two adjacent holes). Note that since such a

task would require a reduction of the dimension in the kernel of Lk , the

generalization of the developed gradient flow routine is either not trivial

or does not exist; instead, one may rely on a combinatorial approach

which requires an efficient algorithm for detecting linearly independent

holes in the complex (which is worth investigating on its own). It

is worth noting that such an approach would be especially useful for

determining and eliminating erroneous connections in sensor networks

(similar to the buoy flows, see, for example, [SBH+20]);

3. in the case of HeCS-preconditioner, one should carefully examine the dif-

ferences between weak collapsibility and d-collapsibility in terms of poly-

nomiality in Theorem IV.IV.11 in order to generalize HeCS-preconditioner

for k > 1. Moreover, developed Algorithm 5 does not aim to com-

pute the heaviest collapsible subcomplex, instead opting for a heavy

and easily obtainable one; this procedure could clearly be improved in

quality and speed besides answering the question of whether the ac-

tually heaviest collapsible subcomplex is obtainable at all in polynomial

time;

4. in the case of classical graph models, Laplacian operators were shown

to have an efficient Algebraic Multigrid (AMG) preconditioner, [LB12],

which one may attempt to generalize for the case of an arbitrary L↑k ;

additionally, one may still attempt to find a stochastic sampled pre-

conditioner C akin to the stochastic Cholesky preconditioner for the

110

https://adni.loni.usc.edu/
https://www.humanconnectome.org/

classical Laplacian L0, [KS16];

5. finally, concerning topological and numerical stabilities, their effects

should be examined in the system where one injects a higher-order

structure attempting to leverage it. For instance, in the case of simpli-

cial complex convolutional graph neural networks (SCCGNNs), [EDS20],

the output of each layer is defined as

xk+1 = σ

(
L∑
i=0

wiL
i
kxk

)
(Eqn. 113)

As a result, the question of the effect of instabilities (and possible

stabilization mechanisms) of the underlying simplicial complex on the

trainability and overall network performance is worth carefully examin-

ing.

111

V References

[AEGL19] Eleonora Andreotti, Dominik Edelmann, Nicola Guglielmi, and

Christian Lubich. Constrained graph partitioning via matrix

differential equations. SIAM Journal on Matrix Analysis and

Applications, 40(1):1–22, 2019.

[AL17] Giorgio Ausiello and Luigi Laura. Directed hypergraphs: In-

troduction and fundamental algorithms—a survey. Theoretical

Computer Science, 658:293–306, 2017.

[AU18] Kristen M Altenburger and Johan Ugander. Monophily in social

networks introduces similarity among friends-of-friends. Nature

human behaviour, 2(4):284–290, 2018.

[BCI+20] Federico Battiston, Giulia Cencetti, Iacopo Iacopini, Vito La-

tora, Maxime Lucas, Alice Patania, Jean-Gabriel Young, and

Giovanni Petri. Networks beyond pairwise interactions: struc-

ture and dynamics. Physics Reports, 874:1–92, 2020.

[BCKZ13] James Brannick, Yao Chen, Johannes Kraus, and Ludmil

Zikatanov. An algebraic multigrid method based on match-

ing in graphs. In Domain Decomposition Methods in Science

and Engineering XX, pages 143–150. Springer, 2013.

[Ben19] Austin R Benson. Three hypergraph eigenvector centralities.

SIAM Journal on Mathematics of Data Science, 1(2):293–312,

2019.

[BES98] Åke Björck, Tommy Elfving, and Zdenek Strakos. Stability of

conjugate gradient and lanczos methods for linear least squares

problems. SIAM Journal on Matrix Analysis and Applications,

19(3):720–736, 1998.

[BFF+11] Matthias Bolten, Stephanie Friedhoff, Andreas Frommer,

Matthias Heming, and Karsten Kahl. Algebraic multigrid meth-

ods for laplacians of graphs. Linear Algebra and its Applications,

434(11):2225–2243, 2011.

[BGB22] Federica Baccini, Filippo Geraci, and Ginestra Bianconi.

Weighted simplicial complexes and their representation power

of higher-order network data and topology. Physical Review E,

106(3):034319, 2022.

112

[BGHS23] Christian Bick, Elizabeth Gross, Heather A Harrington, and

Michael T Schaub. What are higher-order networks? SIAM

Review, 65(3):686–731, 2023.

[BGL16] Austin R Benson, David F Gleich, and Jure Leskovec.

Higher-order organization of complex networks. Science,

353(6295):163–166, 2016.

[BKMZ11] Z. Burda, A. Krzywicki, O. C. Martin, and M. Zagorski. Motifs

emerge from function in model gene regulatory networks. Pro-

ceedings of the National Academy of Sciences, 108(42):17263–

17268, 2011.

[BMNW22] Mitchell Black, William Maxwell, Amir Nayyeri, and Eli Winkel-

man. Computational topology in a collapsing universe: Lapla-

cians, homology, cohomology. In Proceedings of the 2022 An-

nual ACM-SIAM Symposium on Discrete Algorithms (SODA),

pages 226–251. SIAM, 2022.

[CFM+14a] Michael B Cohen, Brittany Terese Fasy, Gary L Miller, Amir

Nayyeri, Richard Peng, and Noel Walkington. Solving 1-

laplacians in nearly linear time: Collapsing and expanding a

topological ball. In Proceedings of the Twenty-Fifth Annual

ACM-SIAM Symposium on Discrete Algorithms, pages 204–

216. SIAM, 2014.

[CFM+14b] Michael B. Cohen, Brittany Terese Fasy, Gary L. Miller, Amir

Nayyeri, Richard Peng, and Noel Walkington. Solving 1-

laplacians in nearly linear time: Collapsing and expanding a

topological ball. In Proceedings of the Twenty-Fifth Annual

ACM-SIAM Symposium on Discrete Algorithms, pages 204–

216. SIAM, 2014.

[Che15] Jeff Cheeger. A lower bound for the smallest eigenvalue of the

laplacian. In Problems in analysis, pages 195–200. Princeton

University Press, 2015.

[CM21] Yu-Chia Chen and Marina Meila. The decomposition of the

higher-order homology embedding constructed from the k-

laplacian. Advances in Neural Information Processing Systems,

34:15695–15709, 2021.

[CMK21] Yu-Chia Chen, Marina Meilă, and Ioannis G Kevrekidis.

Helmholtzian eigenmap: Topological feature discovery &

113

edge flow learning from point cloud data. arXiv preprint

arXiv:2103.07626, 2021.

[CZHZ19] Chen Chen, Dabao Zhang, Tony R Hazbun, and Min Zhang.

Inferring gene regulatory networks from a population of yeast

segregants. Scientific reports, 9(1):1197, 2019.

[Dem97] James W. Demmel. 7. Iterative Methods for Eigenvalue Prob-

lems, pages 361–387. SIAM, 1997.

[DJP+94] Elias Dahlhaus, David S. Johnson, Christos H. Papadimitriou,

Paul D. Seymour, and Mihalis Yannakakis. The complexity of

multiterminal cuts. SIAM Journal on Computing, 23(4):864–

894, 1994.

[DT08] Inderjit S Dhillon and Joel A Tropp. Matrix nearness problems

with bregman divergences. SIAM Journal on Matrix Analysis

and Applications, 29(4):1120–1146, 2008.

[EDS20] Stefania Ebli, Michaël Defferrard, and Gard Spreemann. Sim-

plicial neural networks. arXiv preprint arXiv:2010.03633, 2020.

[EH10] Ernesto Estrada and Desmond J Higham. Network properties

revealed through matrix functions. SIAM review, 52(4):696–

714, 2010.

[ES19] Stefania Ebli and Gard Spreemann. A notion of harmonic clus-

tering in simplicial complexes. In 2019 18th IEEE International

Conference On Machine Learning And Applications (ICMLA),

pages 1083–1090. IEEE, 2019.

[FH16] Santo Fortunato and Darko Hric. Community detection in net-

works: A user guide. Physics reports, 659:1–44, 2016.

[Fie89] Miroslav Fiedler. Laplacian of graphs and algebraic connectivity.

Banach Center Publications, 25(1):57–70, 1989.

[Fri91] Noah E Friedkin. Theoretical foundations for centrality mea-

sures. American journal of Sociology, 96(6):1478–1504, 1991.

[FS11] David Chin-Lung Fong and Michael Saunders. Lsmr: An itera-

tive algorithm for sparse least-squares problems. SIAM Journal

on Scientific Computing, 33(5):2950–2971, 2011.

[GCZ+20] Fangda Gu, Heng Chang, Wenwu Zhu, Somayeh Sojoudi, and

Laurent El Ghaoui. Implicit graph neural networks. Advances

114

in Neural Information Processing Systems, 33:11984–11995,

2020.

[GDPG+21] Lucia Valentina Gambuzza, Francesca Di Patti, Luca Gallo,

Stefano Lepri, Miguel Romance, Regino Criado, Mattia Frasca,

Vito Latora, and Stefano Boccaletti. Stability of synchro-

nization in simplicial complexes. Nature communications,

12(1):1255, 2021.

[Ger31] Semyon Aranovich Gershgorin. Uber die abgrenzung der eigen-

werte einer matrix. Notes of Russian Academy of Science,

(6):749–754, 1931.

[GL22] Nicola Guglielmi and Christian Lubich. Matrix nearness prob-

lems and eigenvalue optimization. Book in preparation, 2022.

[GLF+19] Shengnan Guo, Youfang Lin, Ning Feng, Chao Song, and

Huaiyu Wan. Attention based spatial-temporal graph convo-

lutional networks for traffic flow forecasting. In Proceedings of

the AAAI conference on artificial intelligence, volume 33, pages

922–929, 2019.

[GLL91] L Grippo, F Lampariello, and S Lucidi. A class of nonmono-

tone stabilization methods in unconstrained optimization. Nu-

merische Mathematik, 59(1):779–805, 1991.

[GLO20] Anne Greenbaum, Ren-cang Li, and Michael L Overton. First-

order perturbation theory for eigenvalues and eigenvectors.

SIAM review, 62(2):463–482, 2020.

[GLS23] Nicola Guglielmi, Christian Lubich, and Stefano Sicilia. Rank-1

matrix differential equations for structured eigenvalue optimiza-

tion. SIAM Journal on Numerical Analysis, 61(4):1737–1762,

2023.

[GS14] Javad Ghaderi and Rayadurgam Srikant. Opinion dynamics in

social networks with stubborn agents: Equilibrium and conver-

gence rate. Automatica, 50(12):3209–3215, 2014.

[GS17] Nicolas Gillis and Punit Sharma. On computing the distance

to stability for matrices using linear dissipative hamiltonian sys-

tems. Automatica, 85:113–121, 2017.

[GS23a] Vincent P Grande and Michael T Schaub. Disentangling the

spectral properties of the hodge laplacian: Not all small eigen-

values are equal. arXiv:2311.14427, 2023.

115

[GS23b] Vincent P. Grande and Michael T. Schaub. Topological point

cloud clustering. arXiv:2303.16716, 2023.

[GST23] Nicola Guglielmi, Anton Savostianov, and Francesco Tudisco.

Quantifying the structural stability of simplicial homology. Jour-

nal of Scientific Computing, 97(2), 2023.

[GTGHS20] Nicolás Garćıa Trillos, Moritz Gerlach, Matthias Hein, and

Dejan Slepčev. Error estimates for spectral convergence

of the graph laplacian on random geometric graphs toward

the laplace–beltrami operator. Foundations of Computational

Mathematics, 20(4):827–887, 2020.

[GVL13] Gene H Golub and Charles F Van Loan. Matrix computations.

JHU press, 2013.

[Han02] Phil Hanlon. The Laplacian Method. In Sergey Fomin, edi-

tor, Symmetric Functions 2001: Surveys of Developments and

Perspectives, NATO Science Series, pages 65–91, Dordrecht,

2002. Springer Netherlands.

[Hat05] Allen Hatcher. Algebraic topology. Cambridge University Press,

2005.

[Hig90] Nicholas J Higham. Analysis of the cholesky decomposition of

a semi-definite matrix. 1990.

[Hig08] Nicholas J. Higham. Functions of Matrices. Society for Indus-

trial and Applied Mathematics, 2008.

[HJ12] Roger A Horn and Charles R Johnson. Matrix analysis. Cam-

bridge University Press, 2012.

[HS+52] Magnus R Hestenes, Eduard Stiefel, et al. Methods of conju-

gate gradients for solving linear systems. Journal of research

of the National Bureau of Standards, 49(6):409–436, 1952.

[HW92] Wolfgang Hackbusch and Gabriel Wittum. Incomplete decom-

position (ilu): Algorithms, theory, and applications. Notes Nu-

mer. Fluid Mech, 41, 1992.

[KHT09] Steffen Klamt, Utz-Uwe Haus, and Fabian Theis. Hyper-

graphs and cellular networks. PLoS computational biology,

5(5):e1000385, 2009.

116

[KS16] Rasmus Kyng and Sushant Sachdeva. Approximate gaussian

elimination for Laplacians-fast, sparse, and simple. In 2016

IEEE 57th Annual Symposium on Foundations of Computer

Science (FOCS), pages 573–582. IEEE, 2016.

[LB12] Oren E Livne and Achi Brandt. Lean algebraic multigrid (lamg):

Fast graph laplacian linear solver. SIAM Journal on Scientific

Computing, 34(4):B499–B522, 2012.

[LCK+19] Hyekyoung Lee, Moo K Chung, Hyejin Kang, Hongyoon Choi,

Seunggyun Ha, Youngmin Huh, Eunkyung Kim, and Dong Soo

Lee. Coidentification of group-level hole structures in brain net-

works via hodge laplacian. In Medical Image Computing and

Computer Assisted Intervention–MICCAI 2019: 22nd Interna-

tional Conference, Shenzhen, China, October 13–17, 2019,

Proceedings, Part IV 22, pages 674–682. Springer, 2019.

[Lim20] Lek-Heng Lim. Hodge Laplacians on Graphs. SIAM Review,

62(3):685–715, January 2020.

[LLO+21] Yongsun Lee, Jongshin Lee, Soo Min Oh, Deokjae Lee, and

B Kahng. Homological percolation transitions in growing sim-

plicial complexes. Chaos: An Interdisciplinary Journal of Non-

linear Science, 31(4), 2021.

[LN21a] Davide Lofano and Andrew Newman. The worst way to collapse

a simplex. Israel Journal of Mathematics, 244(2):625–647,

2021.

[LN21b] Davide Lofano and Andrew Newman. The worst way to collapse

a simplex. Israel Journal of Mathematics, 244(2):625–647,

2021.

[Man80] Thomas A Manteuffel. An incomplete factorization technique

for positive definite linear systems. Mathematics of computa-

tion, 34(150):473–497, 1980.

[MDP21] Matthew J McDermott, Shyam S Dwaraknath, and Kristin A

Persson. A graph-based network for predicting chemical reac-

tion pathways in solid-state materials synthesis. Nature com-

munications, 12(1):3097, 2021.

[MSOI+02] Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan,

Dmitri Chklovskii, and Uri Alon. Network motifs: simple build-

ing blocks of complex networks. Science, 298(5594):824–827,

2002.

117

[MV07] Oliver Mason and Mark Verwoerd. Graph theory and networks

in biology. IET systems biology, 1(2):89–119, 2007.

[New06] Mark EJ Newman. Finding community structure in net-

works using the eigenvectors of matrices. Physical review E,

74(3):036104, 2006.

[NKL19] Buddhika Nettasinghe, Vikram Krishnamurthy, and Kristina

Lerman. Diffusion in social networks: Effects of monophilic

contagion, friendship paradox, and reactive networks. IEEE

Transactions on Network Science and Engineering, 7(3):1121–

1132, 2019.

[NN16] Artem Napov and Yvan Notay. An efficient multigrid method

for graph laplacian systems. Electron. Trans. Numer. Anal,

45:201, 2016.

[OPT+17] Nina Otter, Mason A Porter, Ulrike Tillmann, Peter Grindrod,

and Heather A Harrington. A roadmap for the computation of

persistent homology. EPJ Data Science, 6:1–38, 2017.

[OPW22] Braxton Osting, Sourabh Palande, and Bei Wang. Spectral

sparsification of simplicial complexes for clustering and label

propagation. Journal of computational geometry, 11(1), 2022.

[RGWC+23] Emily Ribando-Gros, Rui Wang, Jiahui Chen, Yiying Tong, and

Guo-Wei Wei. Combinatorial and Hodge Laplacians: Similarity

and difference, 2023.

[Saa85] Youcef Saad. Practical use of polynomial preconditionings for

the conjugate gradient method. SIAM Journal on Scientific

and Statistical Computing, 6(4):865–881, 1985.

[Saa03] Yousef Saad. Iterative methods for sparse linear systems.

SIAM, 2003.

[SB07] Thomas Schlitt and Alvis Brazma. Current approaches to gene

regulatory network modelling. BMC bioinformatics, 8:1–22,

2007.

[SBH+20] Michael T. Schaub, Austin R. Benson, Paul Horn, Gabor Lipp-

ner, and Ali Jadbabaie. Random Walks on Simplicial Com-

plexes and the Normalized Hodge 1-Laplacian. SIAM Review,

62(2):353–391, January 2020.

118

[SMP+22] Michael Szell, Sayat Mimar, Tyler Perlman, Gourab Ghoshal,

and Roberta Sinatra. Growing urban bicycle networks. Scien-

tific reports, 12(1):6765, 2022.

[SOMMA02] Shai S. Shen-Orr, Ron Milo, Shmoolik Mangan, and Uri Alon.

Network motifs in the transcriptional regulation network of es-

cherichia coli. Nature Genetics, 31(1):64–68, 2002.

[SS08] Daniel A Spielman and Nikhil Srivastava. Graph sparsification

by effective resistances. In Proceedings of the fortieth annual

ACM symposium on Theory of computing, pages 563–568,

2008.

[SSF+22] Michael T Schaub, Jean-Baptiste Seby, Florian Frantzen,

T Mitchell Roddenberry, Yu Zhu, and Santiago Segarra. Signal

processing on simplicial complexes. In Higher-Order Systems,

pages 301–328. Springer, 2022.

[ST14] Daniel A Spielman and Shang-Hua Teng. Nearly linear time al-

gorithms for preconditioning and solving symmetric, diagonally

dominant linear systems. SIAM Journal on Matrix Analysis and

Applications, 35(3):835–885, 2014.

[Stü01] Klaus Stüben. A review of algebraic multigrid. Numerical Anal-

ysis: Historical Developments in the 20th Century, pages 331–

359, 2001.

[Tan10] Martin Tancer. d-collapsibility is np-complete for d greater or

equal to 4. Chicago Journal OF Theoretical Computer Science,

3:1–28, 2010.

[Tan16a] Martin Tancer. Recognition of collapsible complexes is np-

complete. Discrete & Computational Geometry, 55:21–38,

2016.

[Tan16b] Martin Tancer. Recognition of collapsible complexes is NP-

complete. Discrete & Computational Geometry, 55:21–38,

2016.

[TB20] Joaqúın J Torres and Ginestra Bianconi. Simplicial complexes:

higher-order spectral dimension and dynamics. Journal of

Physics: Complexity, 1(1):015002, 2020.

[TBP21] Francesco Tudisco, Austin R Benson, and Konstantin

Prokopchik. Nonlinear higher-order label spreading. In Proceed-

ings of the Web Conference 2021, pages 2402–2413, 2021.

119

[TH18] Francesco Tudisco and Matthias Hein. A nodal domain the-

orem and a higher-order Cheeger inequality for the graph p-

Laplacian. Journal of Spectral Theory, 8(3):883–908, 2018.

[TH21] Francesco Tudisco and Desmond J Higham. Node and edge

nonlinear eigenvector centrality for hypergraphs. Communica-

tions Physics, 4(1):201, 2021.

[Tro19] Joel A Tropp. Matrix concentration & computational linear

algebra. 2019.

[TZB96] Oleg N Temkin, Andrew V Zeigarnik, and DG Bonchev. Chem-

ical reaction networks: a graph-theoretical approach. CRC

Press, 1996.

[Vig16] Sebastiano Vigna. Spectral ranking. Network Science,

4(4):433–445, 2016.

[W+01] Douglas Brent West et al. Introduction to graph theory, vol-

ume 2. Prentice hall Upper Saddle River, 2001.

[Whi39a] John Henry Constantine Whitehead. Simplicial spaces, nuclei

and m-groups. Proceedings of the London mathematical soci-

ety, 2(1):243–327, 1939.

[Whi39b] John Henry Constantine Whitehead. Simplicial spaces, nuclei

and m-groups. Proceedings of the London mathematical soci-

ety, 2(1):243–327, 1939.

[WWLX22] Ronald Wei, Junjie Wee, Valerie Laurent, and Kelin Xia. Hodge

theory-based biomolecular data analysis. Scientific Reports, 12,

06 2022.

[Y+02] Ulrike Meier Yang et al. Boomeramg: A parallel algebraic multi-

grid solver and preconditioner. Applied Numerical Mathematics,

41(1):155–177, 2002.

[YL14] Jaewon Yang and Jure Leskovec. Overlapping communities

explain core–periphery organization of networks. Proceedings

of the IEEE, 102(12):1892–1902, 2014.

[ZCH+20] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng

Yang, Zhiyuan Liu, Lifeng Wang, Changcheng Li, and Maosong

Sun. Graph neural networks: A review of methods and appli-

cations. AI open, 1:57–81, 2020.

120

[ZJL+22] Tong Zhao, Wei Jin, Yozen Liu, Yingheng Wang, Gang Liu,

Stephan Günnemann, Neil Shah, and Meng Jiang. Graph data

augmentation for graph machine learning: A survey. arXiv

preprint arXiv:2202.08871, 2022.

121

	 Chapter: I Introduction
	 Chapter: II Simplicial complex as Higher-order Topology Description
	 From graph to higher-order models
	 Higher-order Graph Models
	 Simplicial Complexes
	 Hodge's Theory
	 Boundary and Laplacian Operators
	Boundary operators Bk
	 Homology group and Hodge Laplacians Lk
	Homology group as Quontinent space
	 Elements of the Hodge decomposition as harmonic/vorticity/potential flow
	 Laplacian operators Lk
	 Classical Laplacian and its kernel elements
	 Kernel elements of L1

	 Weighted and Normalized Boundary Operators
	 Chapter: III Topological Stability as MNP
	 General idea of the topological stability
	Persistent homology as a facet of topological stability
	 Spectral Matrix Nearness Problems: overview
	Target functional for optimization
	 Formulation as a bi-level optimization task
	 Inner level
	 Free gradient calculation
	 Constrained gradient flow, stationary points, and rank-1 optimizers

	 Outer level and overall optimization scheme
	Direct approach: failure and discontinuity problems
	Principal spectral inheritance
	Homological pollution: inherited almost disconnectedness
	Dimensionality reduction: faux edges
	 Functional, Derivative, and Alternating Scheme for Topological Stability
	 Target Functional and Main Problem for L k
	 Free gradient calculation
	The constrained gradient system and its stationary points
	Free Gradient Transition in the Outer Level
	Algorithm details
	Computational costs
	 Benchmarking
	Illustrative Example
	Triangulation Benchmark
	Transportation Networks
	 Chapter: IV Preconditioning for efficient solver of Laplacian LS
	 Reduction to a least-square problem for up-Laplacian
	Iterative Methods and Preconditioning: an overview
	 Iterative methods
	 Conjugate gradient method and its convergence
	Condition number and convergence rate of CG
	 Zoo of preconditioners
	 Preconditioning of the up-Laplacian
	Sparsification of simplicial complexes
	Schur complements and Cholesky preconditioner
	 Cholesky preconditioner for k = 0
	The structure of the Schur complements Si for k=1
	Collapsibility of a simplicial complex
	Weak collapsibility
	 Preconditioning through the subsampling of the 2 -Core
	Preconditioning quality by the subcomplex
	Algorithm: Preconditioner via heavy collapsible subcomplex
	Benchmarking: triangulation
	Conjugate Gradient Least-Square method
	Shifted incomplete Cholesky preconditioner
	Problem setting: Enriched triangulation as a simplicial complex
	Heavy subcomplex and triangle weight profile
	Timings
	Performance of the preconditioner
	 Chapter: V Conclusion and future prospects
	Overview of main contributions
	Future projects

